Cargando…

Macrovascular Networks on Contrast-Enhanced Magnetic Resonance Imaging Improves Survival Prediction in Newly Diagnosed Glioblastoma

A higher degree of angiogenesis is associated with shortened survival in glioblastoma. Feasible morphometric parameters for analyzing vascular networks in brain tumors in clinical practice are lacking. We investigated whether the macrovascular network classified by the number of vessel-like structur...

Descripción completa

Detalles Bibliográficos
Autores principales: Puig, Josep, Biarnés, Carles, Daunis-i-Estadella, Pepus, Blasco, Gerard, Gimeno, Alfredo, Essig, Marco, Balaña, Carme, Alberich-Bayarri, Angel, Jimenez-Pastor, Ana, Camacho, Eduardo, Thio-Henestrosa, Santiago, Capellades, Jaume, Sanchez-Gonzalez, Javier, Navas-Martí, Marian, Domenech-Ximenos, Blanca, Del Barco, Sonia, Puigdemont, Montserrat, Leiva-Salinas, Carlos, Wintermark, Max, Nael, Kambiz, Jain, Rajan, Pedraza, Salvador
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6356693/
https://www.ncbi.nlm.nih.gov/pubmed/30646519
http://dx.doi.org/10.3390/cancers11010084
_version_ 1783391611334426624
author Puig, Josep
Biarnés, Carles
Daunis-i-Estadella, Pepus
Blasco, Gerard
Gimeno, Alfredo
Essig, Marco
Balaña, Carme
Alberich-Bayarri, Angel
Jimenez-Pastor, Ana
Camacho, Eduardo
Thio-Henestrosa, Santiago
Capellades, Jaume
Sanchez-Gonzalez, Javier
Navas-Martí, Marian
Domenech-Ximenos, Blanca
Del Barco, Sonia
Puigdemont, Montserrat
Leiva-Salinas, Carlos
Wintermark, Max
Nael, Kambiz
Jain, Rajan
Pedraza, Salvador
author_facet Puig, Josep
Biarnés, Carles
Daunis-i-Estadella, Pepus
Blasco, Gerard
Gimeno, Alfredo
Essig, Marco
Balaña, Carme
Alberich-Bayarri, Angel
Jimenez-Pastor, Ana
Camacho, Eduardo
Thio-Henestrosa, Santiago
Capellades, Jaume
Sanchez-Gonzalez, Javier
Navas-Martí, Marian
Domenech-Ximenos, Blanca
Del Barco, Sonia
Puigdemont, Montserrat
Leiva-Salinas, Carlos
Wintermark, Max
Nael, Kambiz
Jain, Rajan
Pedraza, Salvador
author_sort Puig, Josep
collection PubMed
description A higher degree of angiogenesis is associated with shortened survival in glioblastoma. Feasible morphometric parameters for analyzing vascular networks in brain tumors in clinical practice are lacking. We investigated whether the macrovascular network classified by the number of vessel-like structures (nVS) visible on three-dimensional T1-weighted contrast–enhanced (3D-T1CE) magnetic resonance imaging (MRI) could improve survival prediction models for newly diagnosed glioblastoma based on clinical and other imaging features. Ninety-seven consecutive patients (62 men; mean age, 58 ± 15 years) with histologically proven glioblastoma underwent 1.5T-MRI, including anatomical, diffusion-weighted, dynamic susceptibility contrast perfusion, and 3D-T1CE sequences after 0.1 mmol/kg gadobutrol. We assessed nVS related to the tumor on 1-mm isovoxel 3D-T1CE images, and relative cerebral blood volume, relative cerebral flow volume (rCBF), delay mean time, and apparent diffusion coefficient in volumes of interest for contrast-enhancing lesion (CEL), non-CEL, and contralateral normal-appearing white matter. We also assessed Visually Accessible Rembrandt Images scoring system features. We used ROC curves to determine the cutoff for nVS and univariate and multivariate cox proportional hazards regression for overall survival. Prognostic factors were evaluated by Kaplan-Meier survival and ROC analyses. Lesions with nVS > 5 were classified as having highly developed macrovascular network; 58 (60.4%) tumors had highly developed macrovascular network. Patients with highly developed macrovascular network were older, had higher volume(CEL), increased rCBF(CEL), and poor survival; nVS correlated negatively with survival (r = −0.286; p = 0.008). On multivariate analysis, standard treatment, age at diagnosis, and macrovascular network best predicted survival at 1 year (AUC 0.901, 83.3% sensitivity, 93.3% specificity, 96.2% PPV, 73.7% NPV). Contrast-enhanced MRI macrovascular network improves survival prediction in newly diagnosed glioblastoma.
format Online
Article
Text
id pubmed-6356693
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-63566932019-02-05 Macrovascular Networks on Contrast-Enhanced Magnetic Resonance Imaging Improves Survival Prediction in Newly Diagnosed Glioblastoma Puig, Josep Biarnés, Carles Daunis-i-Estadella, Pepus Blasco, Gerard Gimeno, Alfredo Essig, Marco Balaña, Carme Alberich-Bayarri, Angel Jimenez-Pastor, Ana Camacho, Eduardo Thio-Henestrosa, Santiago Capellades, Jaume Sanchez-Gonzalez, Javier Navas-Martí, Marian Domenech-Ximenos, Blanca Del Barco, Sonia Puigdemont, Montserrat Leiva-Salinas, Carlos Wintermark, Max Nael, Kambiz Jain, Rajan Pedraza, Salvador Cancers (Basel) Article A higher degree of angiogenesis is associated with shortened survival in glioblastoma. Feasible morphometric parameters for analyzing vascular networks in brain tumors in clinical practice are lacking. We investigated whether the macrovascular network classified by the number of vessel-like structures (nVS) visible on three-dimensional T1-weighted contrast–enhanced (3D-T1CE) magnetic resonance imaging (MRI) could improve survival prediction models for newly diagnosed glioblastoma based on clinical and other imaging features. Ninety-seven consecutive patients (62 men; mean age, 58 ± 15 years) with histologically proven glioblastoma underwent 1.5T-MRI, including anatomical, diffusion-weighted, dynamic susceptibility contrast perfusion, and 3D-T1CE sequences after 0.1 mmol/kg gadobutrol. We assessed nVS related to the tumor on 1-mm isovoxel 3D-T1CE images, and relative cerebral blood volume, relative cerebral flow volume (rCBF), delay mean time, and apparent diffusion coefficient in volumes of interest for contrast-enhancing lesion (CEL), non-CEL, and contralateral normal-appearing white matter. We also assessed Visually Accessible Rembrandt Images scoring system features. We used ROC curves to determine the cutoff for nVS and univariate and multivariate cox proportional hazards regression for overall survival. Prognostic factors were evaluated by Kaplan-Meier survival and ROC analyses. Lesions with nVS > 5 were classified as having highly developed macrovascular network; 58 (60.4%) tumors had highly developed macrovascular network. Patients with highly developed macrovascular network were older, had higher volume(CEL), increased rCBF(CEL), and poor survival; nVS correlated negatively with survival (r = −0.286; p = 0.008). On multivariate analysis, standard treatment, age at diagnosis, and macrovascular network best predicted survival at 1 year (AUC 0.901, 83.3% sensitivity, 93.3% specificity, 96.2% PPV, 73.7% NPV). Contrast-enhanced MRI macrovascular network improves survival prediction in newly diagnosed glioblastoma. MDPI 2019-01-14 /pmc/articles/PMC6356693/ /pubmed/30646519 http://dx.doi.org/10.3390/cancers11010084 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Puig, Josep
Biarnés, Carles
Daunis-i-Estadella, Pepus
Blasco, Gerard
Gimeno, Alfredo
Essig, Marco
Balaña, Carme
Alberich-Bayarri, Angel
Jimenez-Pastor, Ana
Camacho, Eduardo
Thio-Henestrosa, Santiago
Capellades, Jaume
Sanchez-Gonzalez, Javier
Navas-Martí, Marian
Domenech-Ximenos, Blanca
Del Barco, Sonia
Puigdemont, Montserrat
Leiva-Salinas, Carlos
Wintermark, Max
Nael, Kambiz
Jain, Rajan
Pedraza, Salvador
Macrovascular Networks on Contrast-Enhanced Magnetic Resonance Imaging Improves Survival Prediction in Newly Diagnosed Glioblastoma
title Macrovascular Networks on Contrast-Enhanced Magnetic Resonance Imaging Improves Survival Prediction in Newly Diagnosed Glioblastoma
title_full Macrovascular Networks on Contrast-Enhanced Magnetic Resonance Imaging Improves Survival Prediction in Newly Diagnosed Glioblastoma
title_fullStr Macrovascular Networks on Contrast-Enhanced Magnetic Resonance Imaging Improves Survival Prediction in Newly Diagnosed Glioblastoma
title_full_unstemmed Macrovascular Networks on Contrast-Enhanced Magnetic Resonance Imaging Improves Survival Prediction in Newly Diagnosed Glioblastoma
title_short Macrovascular Networks on Contrast-Enhanced Magnetic Resonance Imaging Improves Survival Prediction in Newly Diagnosed Glioblastoma
title_sort macrovascular networks on contrast-enhanced magnetic resonance imaging improves survival prediction in newly diagnosed glioblastoma
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6356693/
https://www.ncbi.nlm.nih.gov/pubmed/30646519
http://dx.doi.org/10.3390/cancers11010084
work_keys_str_mv AT puigjosep macrovascularnetworksoncontrastenhancedmagneticresonanceimagingimprovessurvivalpredictioninnewlydiagnosedglioblastoma
AT biarnescarles macrovascularnetworksoncontrastenhancedmagneticresonanceimagingimprovessurvivalpredictioninnewlydiagnosedglioblastoma
AT daunisiestadellapepus macrovascularnetworksoncontrastenhancedmagneticresonanceimagingimprovessurvivalpredictioninnewlydiagnosedglioblastoma
AT blascogerard macrovascularnetworksoncontrastenhancedmagneticresonanceimagingimprovessurvivalpredictioninnewlydiagnosedglioblastoma
AT gimenoalfredo macrovascularnetworksoncontrastenhancedmagneticresonanceimagingimprovessurvivalpredictioninnewlydiagnosedglioblastoma
AT essigmarco macrovascularnetworksoncontrastenhancedmagneticresonanceimagingimprovessurvivalpredictioninnewlydiagnosedglioblastoma
AT balanacarme macrovascularnetworksoncontrastenhancedmagneticresonanceimagingimprovessurvivalpredictioninnewlydiagnosedglioblastoma
AT alberichbayarriangel macrovascularnetworksoncontrastenhancedmagneticresonanceimagingimprovessurvivalpredictioninnewlydiagnosedglioblastoma
AT jimenezpastorana macrovascularnetworksoncontrastenhancedmagneticresonanceimagingimprovessurvivalpredictioninnewlydiagnosedglioblastoma
AT camachoeduardo macrovascularnetworksoncontrastenhancedmagneticresonanceimagingimprovessurvivalpredictioninnewlydiagnosedglioblastoma
AT thiohenestrosasantiago macrovascularnetworksoncontrastenhancedmagneticresonanceimagingimprovessurvivalpredictioninnewlydiagnosedglioblastoma
AT capelladesjaume macrovascularnetworksoncontrastenhancedmagneticresonanceimagingimprovessurvivalpredictioninnewlydiagnosedglioblastoma
AT sanchezgonzalezjavier macrovascularnetworksoncontrastenhancedmagneticresonanceimagingimprovessurvivalpredictioninnewlydiagnosedglioblastoma
AT navasmartimarian macrovascularnetworksoncontrastenhancedmagneticresonanceimagingimprovessurvivalpredictioninnewlydiagnosedglioblastoma
AT domenechximenosblanca macrovascularnetworksoncontrastenhancedmagneticresonanceimagingimprovessurvivalpredictioninnewlydiagnosedglioblastoma
AT delbarcosonia macrovascularnetworksoncontrastenhancedmagneticresonanceimagingimprovessurvivalpredictioninnewlydiagnosedglioblastoma
AT puigdemontmontserrat macrovascularnetworksoncontrastenhancedmagneticresonanceimagingimprovessurvivalpredictioninnewlydiagnosedglioblastoma
AT leivasalinascarlos macrovascularnetworksoncontrastenhancedmagneticresonanceimagingimprovessurvivalpredictioninnewlydiagnosedglioblastoma
AT wintermarkmax macrovascularnetworksoncontrastenhancedmagneticresonanceimagingimprovessurvivalpredictioninnewlydiagnosedglioblastoma
AT naelkambiz macrovascularnetworksoncontrastenhancedmagneticresonanceimagingimprovessurvivalpredictioninnewlydiagnosedglioblastoma
AT jainrajan macrovascularnetworksoncontrastenhancedmagneticresonanceimagingimprovessurvivalpredictioninnewlydiagnosedglioblastoma
AT pedrazasalvador macrovascularnetworksoncontrastenhancedmagneticresonanceimagingimprovessurvivalpredictioninnewlydiagnosedglioblastoma