Cargando…
Macrovascular Networks on Contrast-Enhanced Magnetic Resonance Imaging Improves Survival Prediction in Newly Diagnosed Glioblastoma
A higher degree of angiogenesis is associated with shortened survival in glioblastoma. Feasible morphometric parameters for analyzing vascular networks in brain tumors in clinical practice are lacking. We investigated whether the macrovascular network classified by the number of vessel-like structur...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6356693/ https://www.ncbi.nlm.nih.gov/pubmed/30646519 http://dx.doi.org/10.3390/cancers11010084 |
_version_ | 1783391611334426624 |
---|---|
author | Puig, Josep Biarnés, Carles Daunis-i-Estadella, Pepus Blasco, Gerard Gimeno, Alfredo Essig, Marco Balaña, Carme Alberich-Bayarri, Angel Jimenez-Pastor, Ana Camacho, Eduardo Thio-Henestrosa, Santiago Capellades, Jaume Sanchez-Gonzalez, Javier Navas-Martí, Marian Domenech-Ximenos, Blanca Del Barco, Sonia Puigdemont, Montserrat Leiva-Salinas, Carlos Wintermark, Max Nael, Kambiz Jain, Rajan Pedraza, Salvador |
author_facet | Puig, Josep Biarnés, Carles Daunis-i-Estadella, Pepus Blasco, Gerard Gimeno, Alfredo Essig, Marco Balaña, Carme Alberich-Bayarri, Angel Jimenez-Pastor, Ana Camacho, Eduardo Thio-Henestrosa, Santiago Capellades, Jaume Sanchez-Gonzalez, Javier Navas-Martí, Marian Domenech-Ximenos, Blanca Del Barco, Sonia Puigdemont, Montserrat Leiva-Salinas, Carlos Wintermark, Max Nael, Kambiz Jain, Rajan Pedraza, Salvador |
author_sort | Puig, Josep |
collection | PubMed |
description | A higher degree of angiogenesis is associated with shortened survival in glioblastoma. Feasible morphometric parameters for analyzing vascular networks in brain tumors in clinical practice are lacking. We investigated whether the macrovascular network classified by the number of vessel-like structures (nVS) visible on three-dimensional T1-weighted contrast–enhanced (3D-T1CE) magnetic resonance imaging (MRI) could improve survival prediction models for newly diagnosed glioblastoma based on clinical and other imaging features. Ninety-seven consecutive patients (62 men; mean age, 58 ± 15 years) with histologically proven glioblastoma underwent 1.5T-MRI, including anatomical, diffusion-weighted, dynamic susceptibility contrast perfusion, and 3D-T1CE sequences after 0.1 mmol/kg gadobutrol. We assessed nVS related to the tumor on 1-mm isovoxel 3D-T1CE images, and relative cerebral blood volume, relative cerebral flow volume (rCBF), delay mean time, and apparent diffusion coefficient in volumes of interest for contrast-enhancing lesion (CEL), non-CEL, and contralateral normal-appearing white matter. We also assessed Visually Accessible Rembrandt Images scoring system features. We used ROC curves to determine the cutoff for nVS and univariate and multivariate cox proportional hazards regression for overall survival. Prognostic factors were evaluated by Kaplan-Meier survival and ROC analyses. Lesions with nVS > 5 were classified as having highly developed macrovascular network; 58 (60.4%) tumors had highly developed macrovascular network. Patients with highly developed macrovascular network were older, had higher volume(CEL), increased rCBF(CEL), and poor survival; nVS correlated negatively with survival (r = −0.286; p = 0.008). On multivariate analysis, standard treatment, age at diagnosis, and macrovascular network best predicted survival at 1 year (AUC 0.901, 83.3% sensitivity, 93.3% specificity, 96.2% PPV, 73.7% NPV). Contrast-enhanced MRI macrovascular network improves survival prediction in newly diagnosed glioblastoma. |
format | Online Article Text |
id | pubmed-6356693 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-63566932019-02-05 Macrovascular Networks on Contrast-Enhanced Magnetic Resonance Imaging Improves Survival Prediction in Newly Diagnosed Glioblastoma Puig, Josep Biarnés, Carles Daunis-i-Estadella, Pepus Blasco, Gerard Gimeno, Alfredo Essig, Marco Balaña, Carme Alberich-Bayarri, Angel Jimenez-Pastor, Ana Camacho, Eduardo Thio-Henestrosa, Santiago Capellades, Jaume Sanchez-Gonzalez, Javier Navas-Martí, Marian Domenech-Ximenos, Blanca Del Barco, Sonia Puigdemont, Montserrat Leiva-Salinas, Carlos Wintermark, Max Nael, Kambiz Jain, Rajan Pedraza, Salvador Cancers (Basel) Article A higher degree of angiogenesis is associated with shortened survival in glioblastoma. Feasible morphometric parameters for analyzing vascular networks in brain tumors in clinical practice are lacking. We investigated whether the macrovascular network classified by the number of vessel-like structures (nVS) visible on three-dimensional T1-weighted contrast–enhanced (3D-T1CE) magnetic resonance imaging (MRI) could improve survival prediction models for newly diagnosed glioblastoma based on clinical and other imaging features. Ninety-seven consecutive patients (62 men; mean age, 58 ± 15 years) with histologically proven glioblastoma underwent 1.5T-MRI, including anatomical, diffusion-weighted, dynamic susceptibility contrast perfusion, and 3D-T1CE sequences after 0.1 mmol/kg gadobutrol. We assessed nVS related to the tumor on 1-mm isovoxel 3D-T1CE images, and relative cerebral blood volume, relative cerebral flow volume (rCBF), delay mean time, and apparent diffusion coefficient in volumes of interest for contrast-enhancing lesion (CEL), non-CEL, and contralateral normal-appearing white matter. We also assessed Visually Accessible Rembrandt Images scoring system features. We used ROC curves to determine the cutoff for nVS and univariate and multivariate cox proportional hazards regression for overall survival. Prognostic factors were evaluated by Kaplan-Meier survival and ROC analyses. Lesions with nVS > 5 were classified as having highly developed macrovascular network; 58 (60.4%) tumors had highly developed macrovascular network. Patients with highly developed macrovascular network were older, had higher volume(CEL), increased rCBF(CEL), and poor survival; nVS correlated negatively with survival (r = −0.286; p = 0.008). On multivariate analysis, standard treatment, age at diagnosis, and macrovascular network best predicted survival at 1 year (AUC 0.901, 83.3% sensitivity, 93.3% specificity, 96.2% PPV, 73.7% NPV). Contrast-enhanced MRI macrovascular network improves survival prediction in newly diagnosed glioblastoma. MDPI 2019-01-14 /pmc/articles/PMC6356693/ /pubmed/30646519 http://dx.doi.org/10.3390/cancers11010084 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Puig, Josep Biarnés, Carles Daunis-i-Estadella, Pepus Blasco, Gerard Gimeno, Alfredo Essig, Marco Balaña, Carme Alberich-Bayarri, Angel Jimenez-Pastor, Ana Camacho, Eduardo Thio-Henestrosa, Santiago Capellades, Jaume Sanchez-Gonzalez, Javier Navas-Martí, Marian Domenech-Ximenos, Blanca Del Barco, Sonia Puigdemont, Montserrat Leiva-Salinas, Carlos Wintermark, Max Nael, Kambiz Jain, Rajan Pedraza, Salvador Macrovascular Networks on Contrast-Enhanced Magnetic Resonance Imaging Improves Survival Prediction in Newly Diagnosed Glioblastoma |
title | Macrovascular Networks on Contrast-Enhanced Magnetic Resonance Imaging Improves Survival Prediction in Newly Diagnosed Glioblastoma |
title_full | Macrovascular Networks on Contrast-Enhanced Magnetic Resonance Imaging Improves Survival Prediction in Newly Diagnosed Glioblastoma |
title_fullStr | Macrovascular Networks on Contrast-Enhanced Magnetic Resonance Imaging Improves Survival Prediction in Newly Diagnosed Glioblastoma |
title_full_unstemmed | Macrovascular Networks on Contrast-Enhanced Magnetic Resonance Imaging Improves Survival Prediction in Newly Diagnosed Glioblastoma |
title_short | Macrovascular Networks on Contrast-Enhanced Magnetic Resonance Imaging Improves Survival Prediction in Newly Diagnosed Glioblastoma |
title_sort | macrovascular networks on contrast-enhanced magnetic resonance imaging improves survival prediction in newly diagnosed glioblastoma |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6356693/ https://www.ncbi.nlm.nih.gov/pubmed/30646519 http://dx.doi.org/10.3390/cancers11010084 |
work_keys_str_mv | AT puigjosep macrovascularnetworksoncontrastenhancedmagneticresonanceimagingimprovessurvivalpredictioninnewlydiagnosedglioblastoma AT biarnescarles macrovascularnetworksoncontrastenhancedmagneticresonanceimagingimprovessurvivalpredictioninnewlydiagnosedglioblastoma AT daunisiestadellapepus macrovascularnetworksoncontrastenhancedmagneticresonanceimagingimprovessurvivalpredictioninnewlydiagnosedglioblastoma AT blascogerard macrovascularnetworksoncontrastenhancedmagneticresonanceimagingimprovessurvivalpredictioninnewlydiagnosedglioblastoma AT gimenoalfredo macrovascularnetworksoncontrastenhancedmagneticresonanceimagingimprovessurvivalpredictioninnewlydiagnosedglioblastoma AT essigmarco macrovascularnetworksoncontrastenhancedmagneticresonanceimagingimprovessurvivalpredictioninnewlydiagnosedglioblastoma AT balanacarme macrovascularnetworksoncontrastenhancedmagneticresonanceimagingimprovessurvivalpredictioninnewlydiagnosedglioblastoma AT alberichbayarriangel macrovascularnetworksoncontrastenhancedmagneticresonanceimagingimprovessurvivalpredictioninnewlydiagnosedglioblastoma AT jimenezpastorana macrovascularnetworksoncontrastenhancedmagneticresonanceimagingimprovessurvivalpredictioninnewlydiagnosedglioblastoma AT camachoeduardo macrovascularnetworksoncontrastenhancedmagneticresonanceimagingimprovessurvivalpredictioninnewlydiagnosedglioblastoma AT thiohenestrosasantiago macrovascularnetworksoncontrastenhancedmagneticresonanceimagingimprovessurvivalpredictioninnewlydiagnosedglioblastoma AT capelladesjaume macrovascularnetworksoncontrastenhancedmagneticresonanceimagingimprovessurvivalpredictioninnewlydiagnosedglioblastoma AT sanchezgonzalezjavier macrovascularnetworksoncontrastenhancedmagneticresonanceimagingimprovessurvivalpredictioninnewlydiagnosedglioblastoma AT navasmartimarian macrovascularnetworksoncontrastenhancedmagneticresonanceimagingimprovessurvivalpredictioninnewlydiagnosedglioblastoma AT domenechximenosblanca macrovascularnetworksoncontrastenhancedmagneticresonanceimagingimprovessurvivalpredictioninnewlydiagnosedglioblastoma AT delbarcosonia macrovascularnetworksoncontrastenhancedmagneticresonanceimagingimprovessurvivalpredictioninnewlydiagnosedglioblastoma AT puigdemontmontserrat macrovascularnetworksoncontrastenhancedmagneticresonanceimagingimprovessurvivalpredictioninnewlydiagnosedglioblastoma AT leivasalinascarlos macrovascularnetworksoncontrastenhancedmagneticresonanceimagingimprovessurvivalpredictioninnewlydiagnosedglioblastoma AT wintermarkmax macrovascularnetworksoncontrastenhancedmagneticresonanceimagingimprovessurvivalpredictioninnewlydiagnosedglioblastoma AT naelkambiz macrovascularnetworksoncontrastenhancedmagneticresonanceimagingimprovessurvivalpredictioninnewlydiagnosedglioblastoma AT jainrajan macrovascularnetworksoncontrastenhancedmagneticresonanceimagingimprovessurvivalpredictioninnewlydiagnosedglioblastoma AT pedrazasalvador macrovascularnetworksoncontrastenhancedmagneticresonanceimagingimprovessurvivalpredictioninnewlydiagnosedglioblastoma |