Cargando…

Scanning MEMS Mirror for High Definition and High Frame Rate Lissajous Patterns

Scanning MEMS (micro-electro-mechanical system) mirrors are attractive given their potential use in a diverse array of laser scanning display and imaging applications. Here we report on an electrostatic MEMS mirror for high definition and high frame rate (HDHF) Lissajous scanning. The MEMS mirror co...

Descripción completa

Detalles Bibliográficos
Autores principales: Seo, Yeong-Hyeon, Hwang, Kyungmin, Kim, Hyunwoo, Jeong, Ki-Hun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6356757/
https://www.ncbi.nlm.nih.gov/pubmed/30669314
http://dx.doi.org/10.3390/mi10010067
Descripción
Sumario:Scanning MEMS (micro-electro-mechanical system) mirrors are attractive given their potential use in a diverse array of laser scanning display and imaging applications. Here we report on an electrostatic MEMS mirror for high definition and high frame rate (HDHF) Lissajous scanning. The MEMS mirror comprised a low Q-factor inner mirror and frame mirror, which provided two-dimensional scanning at two similar resonant scanning frequencies with high mechanical stability. The low Q inner mirror enabled a broad frequency selection range. The high definition and high frame rate (HDHF) Lissajous scanning of the MEMS mirror was achieved by selecting a set of scanning frequencies near its resonance with a high greatest common divisor (GCD) and a high total lobe number. The MEMS mirror had resonant scanning frequencies at 5402 Hz and 6702 Hz in x and y directions, respectively. The selected pseudo-resonant frequencies of 5450 Hz and 6700 Hz for HDHF scanning provided 50 frames per second with 94% fill factor in 256 × 256 pixels. This Lissajous MEMS mirror could be utilized for assorted HDHF laser scanning imaging and display applications.