Cargando…
A Multi-Label Supervised Topic Model Conditioned on Arbitrary Features for Gene Function Prediction
With the continuous accumulation of biological data, more and more machine learning algorithms have been introduced into the field of gene function prediction, which has great significance in decoding the secret of life. Recently, a multi-label supervised topic model named labeled latent Dirichlet a...
Autores principales: | Liu, Lin, Tang, Lin, Jin, Xin, Zhou, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6356783/ https://www.ncbi.nlm.nih.gov/pubmed/30658497 http://dx.doi.org/10.3390/genes10010057 |
Ejemplares similares
-
Semi-supervised multi-label collective classification ensemble for functional genomics
por: Wu, Qingyao, et al.
Publicado: (2014) -
Multi-Label Feature Selection with Conditional Mutual Information
por: Wang, Xiujuan, et al.
Publicado: (2022) -
Specificity effects in reasoning with counterintuitive and arbitrary conditionals
por: Gazzo Castañeda, Lupita Estefania, et al.
Publicado: (2021) -
A partially function-to-topic model for protein function prediction
por: Liu, Lin, et al.
Publicado: (2018) -
Arbitrary Font Generation by Encoder Learning of Disentangled Features
por: Lee, Jeong-Sik, et al.
Publicado: (2022)