Cargando…
A Computer-Driven Approach to Discover Natural Product Leads for Methicillin-Resistant Staphylococcus aureus Infection Therapy †
The risk of methicillin-resistant Staphylococcus aureus (MRSA) infection is increasing in both the developed and developing countries. New approaches to overcome this problem are in need. A ligand-based strategy to discover new inhibiting agents against MRSA infection was built through exploration o...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6356832/ https://www.ncbi.nlm.nih.gov/pubmed/30597893 http://dx.doi.org/10.3390/md17010016 |
_version_ | 1783391648383762432 |
---|---|
author | Dias, Tiago Gaudêncio, Susana P. Pereira, Florbela |
author_facet | Dias, Tiago Gaudêncio, Susana P. Pereira, Florbela |
author_sort | Dias, Tiago |
collection | PubMed |
description | The risk of methicillin-resistant Staphylococcus aureus (MRSA) infection is increasing in both the developed and developing countries. New approaches to overcome this problem are in need. A ligand-based strategy to discover new inhibiting agents against MRSA infection was built through exploration of machine learning techniques. This strategy is based in two quantitative structure–activity relationship (QSAR) studies, one using molecular descriptors (approach A) and the other using descriptors (approach B). In the approach A, regression models were developed using a total of 6645 molecules that were extracted from the ChEMBL, PubChem and ZINC databases, and recent literature. The performance of the regression models was successfully evaluated by internal and external validation, the best model achieved R(2) of 0.68 and RMSE of 0.59 for the test set. In general natural product (NP) drug discovery is a time-consuming process and several strategies for dereplication have been developed to overcome this inherent limitation. In the approach B, we developed a new NP drug discovery methodology that consists in frontloading samples with 1D NMR descriptors to predict compounds with antibacterial activity prior to bioactivity screening for NPs discovery. The NMR QSAR classification models were built using 1D NMR data ((1)H and (13)C) as descriptors, from crude extracts, fractions and pure compounds obtained from actinobacteria isolated from marine sediments collected off the Madeira Archipelago. The overall predictability accuracies of the best model exceeded 77% for both training and test sets. |
format | Online Article Text |
id | pubmed-6356832 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-63568322019-02-05 A Computer-Driven Approach to Discover Natural Product Leads for Methicillin-Resistant Staphylococcus aureus Infection Therapy † Dias, Tiago Gaudêncio, Susana P. Pereira, Florbela Mar Drugs Article The risk of methicillin-resistant Staphylococcus aureus (MRSA) infection is increasing in both the developed and developing countries. New approaches to overcome this problem are in need. A ligand-based strategy to discover new inhibiting agents against MRSA infection was built through exploration of machine learning techniques. This strategy is based in two quantitative structure–activity relationship (QSAR) studies, one using molecular descriptors (approach A) and the other using descriptors (approach B). In the approach A, regression models were developed using a total of 6645 molecules that were extracted from the ChEMBL, PubChem and ZINC databases, and recent literature. The performance of the regression models was successfully evaluated by internal and external validation, the best model achieved R(2) of 0.68 and RMSE of 0.59 for the test set. In general natural product (NP) drug discovery is a time-consuming process and several strategies for dereplication have been developed to overcome this inherent limitation. In the approach B, we developed a new NP drug discovery methodology that consists in frontloading samples with 1D NMR descriptors to predict compounds with antibacterial activity prior to bioactivity screening for NPs discovery. The NMR QSAR classification models were built using 1D NMR data ((1)H and (13)C) as descriptors, from crude extracts, fractions and pure compounds obtained from actinobacteria isolated from marine sediments collected off the Madeira Archipelago. The overall predictability accuracies of the best model exceeded 77% for both training and test sets. MDPI 2018-12-28 /pmc/articles/PMC6356832/ /pubmed/30597893 http://dx.doi.org/10.3390/md17010016 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Dias, Tiago Gaudêncio, Susana P. Pereira, Florbela A Computer-Driven Approach to Discover Natural Product Leads for Methicillin-Resistant Staphylococcus aureus Infection Therapy † |
title | A Computer-Driven Approach to Discover Natural Product Leads for Methicillin-Resistant Staphylococcus aureus Infection Therapy † |
title_full | A Computer-Driven Approach to Discover Natural Product Leads for Methicillin-Resistant Staphylococcus aureus Infection Therapy † |
title_fullStr | A Computer-Driven Approach to Discover Natural Product Leads for Methicillin-Resistant Staphylococcus aureus Infection Therapy † |
title_full_unstemmed | A Computer-Driven Approach to Discover Natural Product Leads for Methicillin-Resistant Staphylococcus aureus Infection Therapy † |
title_short | A Computer-Driven Approach to Discover Natural Product Leads for Methicillin-Resistant Staphylococcus aureus Infection Therapy † |
title_sort | computer-driven approach to discover natural product leads for methicillin-resistant staphylococcus aureus infection therapy † |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6356832/ https://www.ncbi.nlm.nih.gov/pubmed/30597893 http://dx.doi.org/10.3390/md17010016 |
work_keys_str_mv | AT diastiago acomputerdrivenapproachtodiscovernaturalproductleadsformethicillinresistantstaphylococcusaureusinfectiontherapy AT gaudenciosusanap acomputerdrivenapproachtodiscovernaturalproductleadsformethicillinresistantstaphylococcusaureusinfectiontherapy AT pereiraflorbela acomputerdrivenapproachtodiscovernaturalproductleadsformethicillinresistantstaphylococcusaureusinfectiontherapy AT diastiago computerdrivenapproachtodiscovernaturalproductleadsformethicillinresistantstaphylococcusaureusinfectiontherapy AT gaudenciosusanap computerdrivenapproachtodiscovernaturalproductleadsformethicillinresistantstaphylococcusaureusinfectiontherapy AT pereiraflorbela computerdrivenapproachtodiscovernaturalproductleadsformethicillinresistantstaphylococcusaureusinfectiontherapy |