Cargando…
Prognostic Gene Discovery in Glioblastoma Patients using Deep Learning
This study aims to discover genes with prognostic potential for glioblastoma (GBM) patients’ survival in a patient group that has gone through standard of care treatments including surgeries and chemotherapies, using tumor gene expression at initial diagnosis before treatment. The Cancer Genome Atla...
Autores principales: | Wong, Kelvin K., Rostomily, Robert, Wong, Stephen T. C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6356839/ https://www.ncbi.nlm.nih.gov/pubmed/30626092 http://dx.doi.org/10.3390/cancers11010053 |
Ejemplares similares
-
A prognostic matrix code defines functional glioblastoma phenotypes and niches
por: Vishnoi, Monika, et al.
Publicado: (2023) -
A prognostic matrix code defines functional glioblastoma phenotypes and niches
por: Vishnoi, Monika, et al.
Publicado: (2023) -
Technical Pitfalls of Signal Truncation in Perfusion MRI of Glioblastoma
por: Wong, Kelvin K., et al.
Publicado: (2016) -
Unsupervised deep learning reveals prognostically relevant subtypes of glioblastoma
por: Young, Jonathan D., et al.
Publicado: (2017) -
Deep learning-based quantification of temporalis muscle has prognostic value in patients with glioblastoma
por: Mi, Ella, et al.
Publicado: (2021)