Cargando…
Ebola Virus Bayesian Machine Learning Models Enable New in Vitro Leads
[Image: see text] We have previously described the first Bayesian machine learning models from FDA-approved drug screens, for identifying compounds active against the Ebola virus (EBOV). These models led to the identification of three active molecules in vitro: tilorone, pyronaridine, and quinacrine...
Autores principales: | Anantpadma, Manu, Lane, Thomas, Zorn, Kimberley M., Lingerfelt, Mary A., Clark, Alex M., Freundlich, Joel S., Davey, Robert A., Madrid, Peter B., Ekins, Sean |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2019
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6356859/ https://www.ncbi.nlm.nih.gov/pubmed/30729228 http://dx.doi.org/10.1021/acsomega.8b02948 |
Ejemplares similares
-
Machine learning models identify molecules active against the Ebola virus
in vitro
por: Ekins, Sean, et al.
Publicado: (2017) -
Repurposing the antimalarial pyronaridine tetraphosphate to protect against Ebola virus infection
por: Lane, Thomas R., et al.
Publicado: (2019) -
A common feature pharmacophore for FDA-approved drugs inhibiting the Ebola virus
por: Ekins, Sean, et al.
Publicado: (2014) -
Identification of Diaryl-Quinoline Compounds as Entry Inhibitors of Ebola Virus
por: Cui, Qinghua, et al.
Publicado: (2018) -
Machine Learning Model Analysis and Data Visualization
with Small Molecules Tested in a Mouse Model of Mycobacterium
tuberculosis Infection (2014–2015)
por: Ekins, Sean, et al.
Publicado: (2016)