Cargando…
IGFBP7 Drives Resistance to Epidermal Growth Factor Receptor Tyrosine Kinase Inhibition in Lung Cancer
Patients with epidermal growth factor receptor (EGFR) mutation-positive lung cancer show a dramatic response to EGFR-tyrosine kinase inhibitors (TKIs). However, acquired drug resistance eventually develops. This study explored the novel mechanisms related to TKI resistance. To identify the genes ass...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6356910/ https://www.ncbi.nlm.nih.gov/pubmed/30609749 http://dx.doi.org/10.3390/cancers11010036 |
_version_ | 1783391670570582016 |
---|---|
author | Wu, Shang-Gin Chang, Tzu-Hua Tsai, Meng-Feng Liu, Yi-Nan Hsu, Chia-Lang Chang, Yih-Leong Yu, Chong-Jen Shih, Jin-Yuan |
author_facet | Wu, Shang-Gin Chang, Tzu-Hua Tsai, Meng-Feng Liu, Yi-Nan Hsu, Chia-Lang Chang, Yih-Leong Yu, Chong-Jen Shih, Jin-Yuan |
author_sort | Wu, Shang-Gin |
collection | PubMed |
description | Patients with epidermal growth factor receptor (EGFR) mutation-positive lung cancer show a dramatic response to EGFR-tyrosine kinase inhibitors (TKIs). However, acquired drug resistance eventually develops. This study explored the novel mechanisms related to TKI resistance. To identify the genes associated with TKI resistance, an integrative approach was used to analyze public datasets. Molecular manipulations were performed to investigate the roles of insulin-like growth factor binding protein 7 (IGFBP7) in lung adenocarcinoma. Clinical specimens were collected to validate the impact of IGFBP7 on the efficacy of EGFR TKI treatment. IGFBP7 mRNA expression in cancer cells isolated from malignant pleural effusions after acquired resistance to EGFR-TKI was significantly higher than in cancer cells from treatment-naïve effusions. IGFBP7 expression was markedly increased in cells with long-term TKI-induced resistance compared to in TKI-sensitive parental cells. Reduced IGFBP7 in TKI-resistant cells reversed the resistance to EGFR-TKIs and increased EGFR-TKI-induced apoptosis by up-regulating B-cell lymphoma 2 interacting mediator of cell death (BIM) and activating caspases. Suppression of IGFBP7 attenuated the phosphorylation of insulin-like growth factor 1 receptor (IGF-IR) and downstream protein kinase B (AKT) in TKI-resistant cells. Clinically, higher serum IGFBP7 levels and tumors with positive IGFBP7-immunohistochemical staining were associated with poor TKI-treatment outcomes. IGFBP7 confers resistance to EGFR-TKIs and is a potential therapeutic target for treating EGFR-TKI-resistant cancers. |
format | Online Article Text |
id | pubmed-6356910 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-63569102019-02-05 IGFBP7 Drives Resistance to Epidermal Growth Factor Receptor Tyrosine Kinase Inhibition in Lung Cancer Wu, Shang-Gin Chang, Tzu-Hua Tsai, Meng-Feng Liu, Yi-Nan Hsu, Chia-Lang Chang, Yih-Leong Yu, Chong-Jen Shih, Jin-Yuan Cancers (Basel) Article Patients with epidermal growth factor receptor (EGFR) mutation-positive lung cancer show a dramatic response to EGFR-tyrosine kinase inhibitors (TKIs). However, acquired drug resistance eventually develops. This study explored the novel mechanisms related to TKI resistance. To identify the genes associated with TKI resistance, an integrative approach was used to analyze public datasets. Molecular manipulations were performed to investigate the roles of insulin-like growth factor binding protein 7 (IGFBP7) in lung adenocarcinoma. Clinical specimens were collected to validate the impact of IGFBP7 on the efficacy of EGFR TKI treatment. IGFBP7 mRNA expression in cancer cells isolated from malignant pleural effusions after acquired resistance to EGFR-TKI was significantly higher than in cancer cells from treatment-naïve effusions. IGFBP7 expression was markedly increased in cells with long-term TKI-induced resistance compared to in TKI-sensitive parental cells. Reduced IGFBP7 in TKI-resistant cells reversed the resistance to EGFR-TKIs and increased EGFR-TKI-induced apoptosis by up-regulating B-cell lymphoma 2 interacting mediator of cell death (BIM) and activating caspases. Suppression of IGFBP7 attenuated the phosphorylation of insulin-like growth factor 1 receptor (IGF-IR) and downstream protein kinase B (AKT) in TKI-resistant cells. Clinically, higher serum IGFBP7 levels and tumors with positive IGFBP7-immunohistochemical staining were associated with poor TKI-treatment outcomes. IGFBP7 confers resistance to EGFR-TKIs and is a potential therapeutic target for treating EGFR-TKI-resistant cancers. MDPI 2019-01-02 /pmc/articles/PMC6356910/ /pubmed/30609749 http://dx.doi.org/10.3390/cancers11010036 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wu, Shang-Gin Chang, Tzu-Hua Tsai, Meng-Feng Liu, Yi-Nan Hsu, Chia-Lang Chang, Yih-Leong Yu, Chong-Jen Shih, Jin-Yuan IGFBP7 Drives Resistance to Epidermal Growth Factor Receptor Tyrosine Kinase Inhibition in Lung Cancer |
title | IGFBP7 Drives Resistance to Epidermal Growth Factor Receptor Tyrosine Kinase Inhibition in Lung Cancer |
title_full | IGFBP7 Drives Resistance to Epidermal Growth Factor Receptor Tyrosine Kinase Inhibition in Lung Cancer |
title_fullStr | IGFBP7 Drives Resistance to Epidermal Growth Factor Receptor Tyrosine Kinase Inhibition in Lung Cancer |
title_full_unstemmed | IGFBP7 Drives Resistance to Epidermal Growth Factor Receptor Tyrosine Kinase Inhibition in Lung Cancer |
title_short | IGFBP7 Drives Resistance to Epidermal Growth Factor Receptor Tyrosine Kinase Inhibition in Lung Cancer |
title_sort | igfbp7 drives resistance to epidermal growth factor receptor tyrosine kinase inhibition in lung cancer |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6356910/ https://www.ncbi.nlm.nih.gov/pubmed/30609749 http://dx.doi.org/10.3390/cancers11010036 |
work_keys_str_mv | AT wushanggin igfbp7drivesresistancetoepidermalgrowthfactorreceptortyrosinekinaseinhibitioninlungcancer AT changtzuhua igfbp7drivesresistancetoepidermalgrowthfactorreceptortyrosinekinaseinhibitioninlungcancer AT tsaimengfeng igfbp7drivesresistancetoepidermalgrowthfactorreceptortyrosinekinaseinhibitioninlungcancer AT liuyinan igfbp7drivesresistancetoepidermalgrowthfactorreceptortyrosinekinaseinhibitioninlungcancer AT hsuchialang igfbp7drivesresistancetoepidermalgrowthfactorreceptortyrosinekinaseinhibitioninlungcancer AT changyihleong igfbp7drivesresistancetoepidermalgrowthfactorreceptortyrosinekinaseinhibitioninlungcancer AT yuchongjen igfbp7drivesresistancetoepidermalgrowthfactorreceptortyrosinekinaseinhibitioninlungcancer AT shihjinyuan igfbp7drivesresistancetoepidermalgrowthfactorreceptortyrosinekinaseinhibitioninlungcancer |