Cargando…
A Random Walk Based Cluster Ensemble Approach for Data Integration and Cancer Subtyping
Availability of diverse types of high-throughput data increases the opportunities for researchers to develop computational methods to provide a more comprehensive view for the mechanism and therapy of cancer. One fundamental goal for oncology is to divide patients into subtypes with clinical and bio...
Autores principales: | Yang, Chao, Wang, Yu-Tian, Zheng, Chun-Hou |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6356971/ https://www.ncbi.nlm.nih.gov/pubmed/30669418 http://dx.doi.org/10.3390/genes10010066 |
Ejemplares similares
-
Cluster ensemble based on Random Forests for genetic data
por: Alhusain, Luluah, et al.
Publicado: (2017) -
Clustering cancer gene expression data by projective clustering ensemble
por: Yu, Xianxue, et al.
Publicado: (2017) -
Multi-dimensional data integration algorithm based on random walk with restart
por: Wen, Yuqi, et al.
Publicado: (2021) -
ndmaSNF: cancer subtype discovery based on integrative framework assisted by network diffusion model
por: Yang, Chao, et al.
Publicado: (2017) -
Fast Constrained Spectral Clustering and Cluster Ensemble with Random Projection
por: Liu, Wenfen, et al.
Publicado: (2017)