Cargando…

Digital Image Correlation Comparison of Damaged and Undamaged Aeronautical CFRPs During Compression Tests

The diffusion of composite materials in aeronautical and aerospace applications is attributable to the high specific mechanical properties they offer. In particular, the recent use of Carbon Fiber Reinforced Polymer (CFRP) materials is highly increased. The main disadvantage in using this kind of ma...

Descripción completa

Detalles Bibliográficos
Autores principales: Barile, Claudia, Casavola, Caterina, Pappalettera, Giovanni
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6356974/
https://www.ncbi.nlm.nih.gov/pubmed/30642102
http://dx.doi.org/10.3390/ma12020249
Descripción
Sumario:The diffusion of composite materials in aeronautical and aerospace applications is attributable to the high specific mechanical properties they offer. In particular, the recent use of Carbon Fiber Reinforced Polymer (CFRP) materials is highly increased. The main disadvantage in using this kind of material is related to the possibility of including damages or defects not visible on the surface that compromise their behavior and make their use extremely unsafe if not properly supervised. The most conventional nondestructive techniques allow the detection of damages when they already compromise the life of these materials. The use of the same techniques makes it harder to monitor in-situ of the progress of damages, especially if they occur inside the materials. The implementation of the innovative strain analysis method, like those based on full-field measurements, could provide additional information about the damage mechanisms by supplying the complete strain distribution of the surface of the sample. The present paper examines the mechanical behavior of two different CFRP specimens, with and without damage, subjected to compressive load in an anti-buckling fixture by using the Digital Image Correlation (DIC). The purpose is to measure the out-of-plane displacements, characteristics of the compression tests, in all the points of the ROI (Region of Interest), using a full-field and noncontact technique. The innovative aspect of this work is therefore to solve this problem through an experimental approach with DIC 3D technique.