Cargando…
In Vitro Properties and Virulence of Contemporary Recombinant Influenza B Viruses Harboring Mutations of Cross-Resistance to Neuraminidase Inhibitors
Three neuraminidase inhibitors (NAIs: Oseltamivir, zanamivir and peramivir) are currently approved in many countries for the treatment of influenza A and B infections. The emergence of influenza B viruses (IBVs) containing mutations of cross-resistance to these NAIs constitutes a serious clinical th...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6357004/ https://www.ncbi.nlm.nih.gov/pubmed/30583488 http://dx.doi.org/10.3390/v11010006 |
Sumario: | Three neuraminidase inhibitors (NAIs: Oseltamivir, zanamivir and peramivir) are currently approved in many countries for the treatment of influenza A and B infections. The emergence of influenza B viruses (IBVs) containing mutations of cross-resistance to these NAIs constitutes a serious clinical threat. Herein, we used a reverse genetics system for the current B/Phuket/3073/2013 vaccine strain to investigate the impact on in vitro properties and virulence of H136N, R152K, D198E/N, I222T and N294S NA substitutions (N2 numbering), reported by the World Health Organization (WHO) as clinical markers of reduced or highly-reduced inhibition (RI/HRI) to multiple NAIs. Recombinant viruses were tested by NA inhibition assays. Their replicative capacity and virulence were evaluated in ST6GalI-MDCK cells and BALB/c mice, respectively. All NA mutants (excepted D198E/N) showed RI/HRI phenotypes against ≥ 2 NAIs. These mutants grew to comparable titers of the recombinant wild-type (WT) IBV in vitro, and some of them (H136N, I222T and N294S mutants) induced more weight loss and mortality in BALB/c mice in comparison to the recombinant WT IBV. These results demonstrate that, in contemporary IBVs, some NA mutations may confer RI/HRI phenotypes to existing NAIs without altering the viral fitness. This reinforces the need for development of novel antiviral strategies with different mechanisms of action. |
---|