Cargando…
Upregulation of miR-107 expression following hyperbaric oxygen treatment suppresses HMGB1/RAGE signaling in degenerated human nucleus pulposus cells
BACKGROUND: The expression of both high-mobility group box 1 (HMGB1) and receptor for advanced glycation end-products (RAGE) is upregulated in degenerated discs. HMGB1 is known to function as a coupling factor between hypoxia and inflammation in arthritis, and this inflammatory response is modulated...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6357369/ https://www.ncbi.nlm.nih.gov/pubmed/30704538 http://dx.doi.org/10.1186/s13075-019-1830-1 |
_version_ | 1783391771231780864 |
---|---|
author | Niu, Chi-Chien Lin, Song-Shu Yuan, Li-Jen Lu, Meng-Ling Ueng, Steve W. N. Yang, Chuen-Yung Tsai, Tsung-Ting Lai, Po-Liang |
author_facet | Niu, Chi-Chien Lin, Song-Shu Yuan, Li-Jen Lu, Meng-Ling Ueng, Steve W. N. Yang, Chuen-Yung Tsai, Tsung-Ting Lai, Po-Liang |
author_sort | Niu, Chi-Chien |
collection | PubMed |
description | BACKGROUND: The expression of both high-mobility group box 1 (HMGB1) and receptor for advanced glycation end-products (RAGE) is upregulated in degenerated discs. HMGB1 is known to function as a coupling factor between hypoxia and inflammation in arthritis, and this inflammatory response is modulated by microRNAs (miRNAs), with miR-107 expression downregulated during hypoxia. In this study, we investigated the regulation of the miR-107/HMGB1/RAGE pathway in degenerated nucleus pulposus cells (NPCs) after hyperbaric oxygen (HBO) treatment. METHODS: NPCs were separated from human degenerated intervertebral disc tissues. The control cells were maintained in 5% CO(2)/95% air, and the hyperoxic cells were exposed to 100% O(2) at 2.5 atmospheres absolute. MiRNA expression profiling was performed via microarray and confirmed by real-time PCR, and miRNA target genes were identified using bioinformatics and luciferase reporter assays. The cellular protein and mRNA levels of HMGB1, RAGE, and inducible nitric oxide synthase (iNOS) were assessed, and the phosphorylation of MAPK (p38MAPK, ERK, and JNK) was evaluated. Additionally, cytosolic and nuclear fractions of the IκBα and NF-κB p65 proteins were analyzed, and secreted HMGB1 and metalloprotease (MMP) levels in the conditioned media were quantified. RESULTS: Using microarray analyses, 96 miRNAs were identified as upregulated and 66 downregulated following HBO treatment. Based on these results, miR-107 was selected for further investigation. Bioinformatics analyses indicated that the 3′ untranslated region of the HMGB1 mRNA contained the “seed-matched-sequence” for hsa-miR-107, which was validated via dual-luciferase reporter assays. MiR-107 was markedly induced by HBO, and simultaneous suppression of HMGB1 was observed in NPCs. Knockdown of miR-107 resulted in upregulation of HMGB1 expression in HBO-treated cells, and HBO treatment downregulated the mRNA and protein levels of HMGB1, RAGE, and iNOS and the secretion of HMGB1. In addition, HBO treatment upregulated the protein levels of cytosolic IκBα and decreased the nuclear translocation of NF-κB in NPCs. Moreover, HBO treatment downregulated the phosphorylation of p38MAPK, ERK, and JNK and significantly decreased the secretion of MMP-3, MMP-9, and MMP-13. CONCLUSIONS: HBO inhibits pathways related to HMGB1/RAGE signaling via upregulation of miR-107 expression in degenerated human NPCs. |
format | Online Article Text |
id | pubmed-6357369 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-63573692019-02-07 Upregulation of miR-107 expression following hyperbaric oxygen treatment suppresses HMGB1/RAGE signaling in degenerated human nucleus pulposus cells Niu, Chi-Chien Lin, Song-Shu Yuan, Li-Jen Lu, Meng-Ling Ueng, Steve W. N. Yang, Chuen-Yung Tsai, Tsung-Ting Lai, Po-Liang Arthritis Res Ther Research Article BACKGROUND: The expression of both high-mobility group box 1 (HMGB1) and receptor for advanced glycation end-products (RAGE) is upregulated in degenerated discs. HMGB1 is known to function as a coupling factor between hypoxia and inflammation in arthritis, and this inflammatory response is modulated by microRNAs (miRNAs), with miR-107 expression downregulated during hypoxia. In this study, we investigated the regulation of the miR-107/HMGB1/RAGE pathway in degenerated nucleus pulposus cells (NPCs) after hyperbaric oxygen (HBO) treatment. METHODS: NPCs were separated from human degenerated intervertebral disc tissues. The control cells were maintained in 5% CO(2)/95% air, and the hyperoxic cells were exposed to 100% O(2) at 2.5 atmospheres absolute. MiRNA expression profiling was performed via microarray and confirmed by real-time PCR, and miRNA target genes were identified using bioinformatics and luciferase reporter assays. The cellular protein and mRNA levels of HMGB1, RAGE, and inducible nitric oxide synthase (iNOS) were assessed, and the phosphorylation of MAPK (p38MAPK, ERK, and JNK) was evaluated. Additionally, cytosolic and nuclear fractions of the IκBα and NF-κB p65 proteins were analyzed, and secreted HMGB1 and metalloprotease (MMP) levels in the conditioned media were quantified. RESULTS: Using microarray analyses, 96 miRNAs were identified as upregulated and 66 downregulated following HBO treatment. Based on these results, miR-107 was selected for further investigation. Bioinformatics analyses indicated that the 3′ untranslated region of the HMGB1 mRNA contained the “seed-matched-sequence” for hsa-miR-107, which was validated via dual-luciferase reporter assays. MiR-107 was markedly induced by HBO, and simultaneous suppression of HMGB1 was observed in NPCs. Knockdown of miR-107 resulted in upregulation of HMGB1 expression in HBO-treated cells, and HBO treatment downregulated the mRNA and protein levels of HMGB1, RAGE, and iNOS and the secretion of HMGB1. In addition, HBO treatment upregulated the protein levels of cytosolic IκBα and decreased the nuclear translocation of NF-κB in NPCs. Moreover, HBO treatment downregulated the phosphorylation of p38MAPK, ERK, and JNK and significantly decreased the secretion of MMP-3, MMP-9, and MMP-13. CONCLUSIONS: HBO inhibits pathways related to HMGB1/RAGE signaling via upregulation of miR-107 expression in degenerated human NPCs. BioMed Central 2019-01-31 2019 /pmc/articles/PMC6357369/ /pubmed/30704538 http://dx.doi.org/10.1186/s13075-019-1830-1 Text en © The Author(s). 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Niu, Chi-Chien Lin, Song-Shu Yuan, Li-Jen Lu, Meng-Ling Ueng, Steve W. N. Yang, Chuen-Yung Tsai, Tsung-Ting Lai, Po-Liang Upregulation of miR-107 expression following hyperbaric oxygen treatment suppresses HMGB1/RAGE signaling in degenerated human nucleus pulposus cells |
title | Upregulation of miR-107 expression following hyperbaric oxygen treatment suppresses HMGB1/RAGE signaling in degenerated human nucleus pulposus cells |
title_full | Upregulation of miR-107 expression following hyperbaric oxygen treatment suppresses HMGB1/RAGE signaling in degenerated human nucleus pulposus cells |
title_fullStr | Upregulation of miR-107 expression following hyperbaric oxygen treatment suppresses HMGB1/RAGE signaling in degenerated human nucleus pulposus cells |
title_full_unstemmed | Upregulation of miR-107 expression following hyperbaric oxygen treatment suppresses HMGB1/RAGE signaling in degenerated human nucleus pulposus cells |
title_short | Upregulation of miR-107 expression following hyperbaric oxygen treatment suppresses HMGB1/RAGE signaling in degenerated human nucleus pulposus cells |
title_sort | upregulation of mir-107 expression following hyperbaric oxygen treatment suppresses hmgb1/rage signaling in degenerated human nucleus pulposus cells |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6357369/ https://www.ncbi.nlm.nih.gov/pubmed/30704538 http://dx.doi.org/10.1186/s13075-019-1830-1 |
work_keys_str_mv | AT niuchichien upregulationofmir107expressionfollowinghyperbaricoxygentreatmentsuppresseshmgb1ragesignalingindegeneratedhumannucleuspulposuscells AT linsongshu upregulationofmir107expressionfollowinghyperbaricoxygentreatmentsuppresseshmgb1ragesignalingindegeneratedhumannucleuspulposuscells AT yuanlijen upregulationofmir107expressionfollowinghyperbaricoxygentreatmentsuppresseshmgb1ragesignalingindegeneratedhumannucleuspulposuscells AT lumengling upregulationofmir107expressionfollowinghyperbaricoxygentreatmentsuppresseshmgb1ragesignalingindegeneratedhumannucleuspulposuscells AT uengstevewn upregulationofmir107expressionfollowinghyperbaricoxygentreatmentsuppresseshmgb1ragesignalingindegeneratedhumannucleuspulposuscells AT yangchuenyung upregulationofmir107expressionfollowinghyperbaricoxygentreatmentsuppresseshmgb1ragesignalingindegeneratedhumannucleuspulposuscells AT tsaitsungting upregulationofmir107expressionfollowinghyperbaricoxygentreatmentsuppresseshmgb1ragesignalingindegeneratedhumannucleuspulposuscells AT laipoliang upregulationofmir107expressionfollowinghyperbaricoxygentreatmentsuppresseshmgb1ragesignalingindegeneratedhumannucleuspulposuscells |