Cargando…
To develop a novel animal model of myocardial infarction: A research imperative
Although great progress has been made in therapeutic interventions for coronary artery disease (CAD), it is still the deadliest disease in the world. Currently animals that are similar to human beings in their cardiovascular pathophysiology are being used to explore the pathogenesis and therapy of C...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6357429/ https://www.ncbi.nlm.nih.gov/pubmed/30891545 http://dx.doi.org/10.1002/ame2.12010 |
Sumario: | Although great progress has been made in therapeutic interventions for coronary artery disease (CAD), it is still the deadliest disease in the world. Currently animals that are similar to human beings in their cardiovascular pathophysiology are being used to explore the pathogenesis and therapy of CAD. There have been a series of developments in creating CAD animal models using mice, rats, rabbits, dogs, and pigs, but unfortunately there is still no acceptable model for human CAD. The ideal CAD animal model should satisfy several conditions as follows. First of all, it should have a pathophysiological process for CAD that is similar to humans. Second, it should be useable for assessing drug efficacy. The last and most important condition is that the model can be used to duplicate clinical therapeutic skills. The limitations of current methods for making animal models have meant that these models not only do not duplicate the actual pathogenesis, but also cannot be used to simulate clinical therapy, and do not support scientific evaluation of drug efficacy. Therefore, the development of a fit‐for‐purpose animal model for CAD is imperative for future research. Such a development will lead to rapid progress and greater efficiency in CAD research. This paper summarizes the present situation in the field of CAD animal models, and puts forwards ideas for developing a novel animal model of myocardial infarction. |
---|