Cargando…
In-silico comparison of two induction regimens (7 + 3 vs 7 + 3 plus additional bone marrow evaluation) in acute myeloid leukemia treatment
BACKGROUND: Clinical integration of systems biology approaches is gaining in importance in the course of digital revolution in modern medicine. We present our results of the analysis of an extended mathematical model describing abnormal human hematopoiesis. The model is able to describe the course o...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6357450/ https://www.ncbi.nlm.nih.gov/pubmed/30704476 http://dx.doi.org/10.1186/s12918-019-0684-0 |
_version_ | 1783391795439206400 |
---|---|
author | Banck, Jan Christoph Görlich, Dennis |
author_facet | Banck, Jan Christoph Görlich, Dennis |
author_sort | Banck, Jan Christoph |
collection | PubMed |
description | BACKGROUND: Clinical integration of systems biology approaches is gaining in importance in the course of digital revolution in modern medicine. We present our results of the analysis of an extended mathematical model describing abnormal human hematopoiesis. The model is able to describe the course of an acute myeloid leukemia including its treatment. In first-line treatment of acute myeloid leukemia, the induction chemotherapy aims for a rapid leukemic cell reduction. We consider combinations of cytarabine and anthracycline-like chemotherapy. Both substances are widely used as standard treatment to achieve first remission. In particular, we compare two scenarios: a single-induction course with 7 days cytarabine and 3 day of anthracycline-like treatment (7 + 3) with a 7 + 3 course and a bone marrow evaluation that leads, in case of insufficient leukemic cell reduction, to the provision of a second chemotherapy course. Three scenarios, based on the leukemias growth kinetics (slow, intermediate, fast), were analyzed. We simulated different intensity combinations for both therapy schemata (7 + 3 and 7 + 3 + evaluation). RESULTS: Our model shows that within the 7 + 3 regimen a wider range of intensity combinations result in a complete remission (CR), compared to 7 + 3 + evaluation (fast: 64.3% vs 46.4%; intermediate: 63.7% vs 46.7%; slow: 0% vs 0%). Additionally, the number of simulations resulting in a prolonged CR was higher within the standard regimen (fast: 59.8% vs 40.1%; intermediate: 48.6% vs 31.0%; slow: 0% vs 0%). On the contrary, the 7 + 3 + evaluation regimen allows CR and prolonged CR by lower chemotherapy intensities compared to 7 + 3. Leukemic pace has a strong impact on treatment response and especially on specific effective doses. As a result, faster leukemias are characterized by superior treatment outcomes and can be treated effectively with lower treatment intensities. CONCLUSIONS: We could show that 7 + 3 treatment has considerable more chemotherapy combinations leading to a first CR. However, the 7 + 3 + evaluation regimen leads to CR for lower therapy intensity and presumably less side effects. An additional evaluation can be considered beneficial to control therapy success, especially in low dose settings. The treatment success is dependent on leukemia growth dynamics. The determination of leukemic pace should be a relevant part of a personalized medicine. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12918-019-0684-0) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-6357450 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-63574502019-02-07 In-silico comparison of two induction regimens (7 + 3 vs 7 + 3 plus additional bone marrow evaluation) in acute myeloid leukemia treatment Banck, Jan Christoph Görlich, Dennis BMC Syst Biol Research Article BACKGROUND: Clinical integration of systems biology approaches is gaining in importance in the course of digital revolution in modern medicine. We present our results of the analysis of an extended mathematical model describing abnormal human hematopoiesis. The model is able to describe the course of an acute myeloid leukemia including its treatment. In first-line treatment of acute myeloid leukemia, the induction chemotherapy aims for a rapid leukemic cell reduction. We consider combinations of cytarabine and anthracycline-like chemotherapy. Both substances are widely used as standard treatment to achieve first remission. In particular, we compare two scenarios: a single-induction course with 7 days cytarabine and 3 day of anthracycline-like treatment (7 + 3) with a 7 + 3 course and a bone marrow evaluation that leads, in case of insufficient leukemic cell reduction, to the provision of a second chemotherapy course. Three scenarios, based on the leukemias growth kinetics (slow, intermediate, fast), were analyzed. We simulated different intensity combinations for both therapy schemata (7 + 3 and 7 + 3 + evaluation). RESULTS: Our model shows that within the 7 + 3 regimen a wider range of intensity combinations result in a complete remission (CR), compared to 7 + 3 + evaluation (fast: 64.3% vs 46.4%; intermediate: 63.7% vs 46.7%; slow: 0% vs 0%). Additionally, the number of simulations resulting in a prolonged CR was higher within the standard regimen (fast: 59.8% vs 40.1%; intermediate: 48.6% vs 31.0%; slow: 0% vs 0%). On the contrary, the 7 + 3 + evaluation regimen allows CR and prolonged CR by lower chemotherapy intensities compared to 7 + 3. Leukemic pace has a strong impact on treatment response and especially on specific effective doses. As a result, faster leukemias are characterized by superior treatment outcomes and can be treated effectively with lower treatment intensities. CONCLUSIONS: We could show that 7 + 3 treatment has considerable more chemotherapy combinations leading to a first CR. However, the 7 + 3 + evaluation regimen leads to CR for lower therapy intensity and presumably less side effects. An additional evaluation can be considered beneficial to control therapy success, especially in low dose settings. The treatment success is dependent on leukemia growth dynamics. The determination of leukemic pace should be a relevant part of a personalized medicine. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12918-019-0684-0) contains supplementary material, which is available to authorized users. BioMed Central 2019-01-31 /pmc/articles/PMC6357450/ /pubmed/30704476 http://dx.doi.org/10.1186/s12918-019-0684-0 Text en © The Author(s). 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Banck, Jan Christoph Görlich, Dennis In-silico comparison of two induction regimens (7 + 3 vs 7 + 3 plus additional bone marrow evaluation) in acute myeloid leukemia treatment |
title | In-silico comparison of two induction regimens (7 + 3 vs 7 + 3 plus additional bone marrow evaluation) in acute myeloid leukemia treatment |
title_full | In-silico comparison of two induction regimens (7 + 3 vs 7 + 3 plus additional bone marrow evaluation) in acute myeloid leukemia treatment |
title_fullStr | In-silico comparison of two induction regimens (7 + 3 vs 7 + 3 plus additional bone marrow evaluation) in acute myeloid leukemia treatment |
title_full_unstemmed | In-silico comparison of two induction regimens (7 + 3 vs 7 + 3 plus additional bone marrow evaluation) in acute myeloid leukemia treatment |
title_short | In-silico comparison of two induction regimens (7 + 3 vs 7 + 3 plus additional bone marrow evaluation) in acute myeloid leukemia treatment |
title_sort | in-silico comparison of two induction regimens (7 + 3 vs 7 + 3 plus additional bone marrow evaluation) in acute myeloid leukemia treatment |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6357450/ https://www.ncbi.nlm.nih.gov/pubmed/30704476 http://dx.doi.org/10.1186/s12918-019-0684-0 |
work_keys_str_mv | AT banckjanchristoph insilicocomparisonoftwoinductionregimens73vs73plusadditionalbonemarrowevaluationinacutemyeloidleukemiatreatment AT gorlichdennis insilicocomparisonoftwoinductionregimens73vs73plusadditionalbonemarrowevaluationinacutemyeloidleukemiatreatment |