Cargando…

An experimental quantum Bernoulli factory

There has been a concerted effort to identify problems computable with quantum technology, which are intractable with classical technology or require far fewer resources to compute. Recently, randomness processing in a Bernoulli factory has been identified as one such task. Here, we report two quant...

Descripción completa

Detalles Bibliográficos
Autores principales: Patel, Raj B., Rudolph, Terry, Pryde, Geoff J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6357723/
https://www.ncbi.nlm.nih.gov/pubmed/30746457
http://dx.doi.org/10.1126/sciadv.aau6668
Descripción
Sumario:There has been a concerted effort to identify problems computable with quantum technology, which are intractable with classical technology or require far fewer resources to compute. Recently, randomness processing in a Bernoulli factory has been identified as one such task. Here, we report two quantum photonic implementations of a Bernoulli factory, one using quantum coherence and single-qubit measurements and the other one using quantum coherence and entangling measurements of two qubits. We show that the former consumes three orders of magnitude fewer resources than the best-known classical method, while entanglement offers a further fivefold reduction. These concepts may provide a means for quantum-enhanced performance in the simulation of stochastic processes and sampling tasks.