Cargando…
Seizure detection by convolutional neural network-based analysis of scalp electroencephalography plot images
We hypothesized that expert epileptologists can detect seizures directly by visually analyzing EEG plot images, unlike automated methods that analyze spectro-temporal features or complex, non-stationary features of EEG signals. If so, seizure detection could benefit from convolutional neural network...
Autores principales: | Emami, Ali, Kunii, Naoto, Matsuo, Takeshi, Shinozaki, Takashi, Kawai, Kensuke, Takahashi, Hirokazu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6357853/ https://www.ncbi.nlm.nih.gov/pubmed/30711680 http://dx.doi.org/10.1016/j.nicl.2019.101684 |
Ejemplares similares
-
Pediatric Seizure Prediction in Scalp EEG Using a Multi-Scale Neural Network With Dilated Convolutions
Publicado: (2022) -
Efficient graph convolutional networks for seizure prediction using scalp EEG
por: Jia, Manhua, et al.
Publicado: (2022) -
Neural decoding of expressive human movement from scalp electroencephalography (EEG)
por: Cruz-Garza, Jesus G., et al.
Publicado: (2014) -
Correlates of spreading depolarization in human scalp electroencephalography
por: Drenckhahn, Christoph, et al.
Publicado: (2012) -
Arrangements of Resting State Electroencephalography as the Input to Convolutional Neural Network for Biometric Identification
por: Lai, Chi Qin, et al.
Publicado: (2019)