Cargando…
Effort-aware and just-in-time defect prediction with neural network
Effort-aware just-in-time (JIT) defect prediction is to rank source code changes based on the likelihood of detects as well as the effort to inspect such changes. Accurate defect prediction algorithms help to find more defects with limited effort. To improve the accuracy of defect prediction, in thi...
Autores principales: | Qiao, Lei, Wang, Yan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6358090/ https://www.ncbi.nlm.nih.gov/pubmed/30707738 http://dx.doi.org/10.1371/journal.pone.0211359 |
Ejemplares similares
-
Graph-based machine learning improves just-in-time defect prediction
por: Bryan, Jonathan, et al.
Publicado: (2023) -
Synapse-Neuron-Aware Training Scheme of Defect-Tolerant Neural Networks with Defective Memristor Crossbars
por: An, Jiyong, et al.
Publicado: (2022) -
An imbalance-aware deep neural network for early prediction of preeclampsia
por: Bennett, Rachel, et al.
Publicado: (2022) -
Uncertainty-aware prediction of chemical reaction yields with graph neural networks
por: Kwon, Youngchun, et al.
Publicado: (2022) -
Trustworthy Critical Infrastructures via Physics-Aware Just-Ahead-Of-Time Verification
por: Zonouz, Saman
Publicado: (2017)