Cargando…

Seasonal fluxes of carbon monoxide from an intensively grazed grassland in Scotland

Fluxes of carbon monoxide (CO) were measured using a fast-response quantum cascade laser absorption spectrometer and the eddy covariance method at a long-term intensively grazed grassland in southern Scotland. Measurements lasted 20 months from April 2016 to November 2017, during which normal agricu...

Descripción completa

Detalles Bibliográficos
Autores principales: Cowan, N., Helfter, C., Langford, B., Coyle, M., Levy, P., Moxley, J., Simmons, I., Leeson, S., Nemitz, E., Skiba, U.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Pergamon 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6358145/
https://www.ncbi.nlm.nih.gov/pubmed/30740027
http://dx.doi.org/10.1016/j.atmosenv.2018.09.039
Descripción
Sumario:Fluxes of carbon monoxide (CO) were measured using a fast-response quantum cascade laser absorption spectrometer and the eddy covariance method at a long-term intensively grazed grassland in southern Scotland. Measurements lasted 20 months from April 2016 to November 2017, during which normal agricultural activities continued. Observed fluxes followed a regular diurnal cycle, peaking at midday and returning to values near zero during the night, with occasional uptake observed. CO fluxes correlated well with the meteorological variables of solar radiation, soil temperature and soil moisture content. Using a general additive model (GAM) we were able to gap fill CO fluxes and estimate annual fluxes of 0.38 ± 0.046 and 0.35 ± 0.045 g C m(−2) y(−1)g C m(−2) y(−1) for 2016 and 2017, respectively. If the CO fluxes reported in this study are representative of UK grasslands, then national annual emissions could be expected to be in the order of 61.91 (54.3–69.5) Gg, which equates to 3.8% (3.4–4.3%) of the current national inventory total.