Cargando…
An atlas of genetic influences on osteoporosis in humans and mice
Osteoporosis is a common aging-related disease diagnosed primarily using bone mineral density (BMD). We assessed genetic determinants of BMD as estimated by heel quantitative ultrasound (eBMD) in 426,824 individuals, identifying 518 genome-wide significant loci (301 novel), explaining 20% of its var...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6358485/ https://www.ncbi.nlm.nih.gov/pubmed/30598549 http://dx.doi.org/10.1038/s41588-018-0302-x |
Sumario: | Osteoporosis is a common aging-related disease diagnosed primarily using bone mineral density (BMD). We assessed genetic determinants of BMD as estimated by heel quantitative ultrasound (eBMD) in 426,824 individuals, identifying 518 genome-wide significant loci (301 novel), explaining 20% of its variance. We identified 13 bone fracture loci, all associated with eBMD, in ~1.2M individuals. We then identified target genes enriched for genes known to influence bone density and strength (maximum odds-ratio=58, p=10(−75)) from cell-specific features, including chromatin conformation and accessible chromatin sites. We next performed rapid-throughput skeletal phenotyping of 126 knockout mice lacking target genes and found an increased abnormal skeletal phenotype frequency compared to 526 unselected lines (p<0.0001). In-depth analysis of one gene, DAAM2, showed a disproportionate decrease in bone strength relative to mineralization. This genetic atlas provides evidence testing how to link associated-SNPs to causal genes, offers new insights into osteoporosis pathophysiology and highlights opportunities for drug development. |
---|