Cargando…
Epitope-based vaccine design yields fusion peptide-directed antibodies that neutralize diverse strains of HIV-1
A central goal of HIV-1-vaccine research is the elicitation of antibodies capable of neutralizing diverse primary isolates of HIV-1. Here we show that focusing the immune response to exposed N-terminal residues of the fusion peptide, a critical component of the viral entry machinery and the epitope...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6358635/ https://www.ncbi.nlm.nih.gov/pubmed/29867235 http://dx.doi.org/10.1038/s41591-018-0042-6 |
Sumario: | A central goal of HIV-1-vaccine research is the elicitation of antibodies capable of neutralizing diverse primary isolates of HIV-1. Here we show that focusing the immune response to exposed N-terminal residues of the fusion peptide, a critical component of the viral entry machinery and the epitope of antibodies elicited by HIV-1 infection, through immunization with fusion peptide-coupled carriers and prefusion-stabilized envelope trimers, induces cross-clade neutralizing responses. In mice, these immunogens elicited monoclonal antibodies capable of neutralizing up to 31% of a cross-clade panel of 208 HIV-1 strains. Crystal and cryo-electron microscopy structures of these antibodies revealed fusion peptide-conformational diversity as a molecular explanation for the cross-clade neutralization. Immunization of guinea pigs and rhesus macaques induced similarly broad fusion peptide-directed neutralizing responses suggesting translatability. The N terminus of the HIV-1-fusion peptide is thus a promising target of vaccine efforts aimed at eliciting broadly neutralizing antibodies. |
---|