Cargando…
A Self-Adaptive 1D Convolutional Neural Network for Flight-State Identification
The vibration of a wing structure in the air reflects coupled aerodynamic–mechanical responses under varying flight states that are defined by the angle of attack and airspeed. It is of great challenge to identify the flight state from the complex vibration signals. In this paper, a novel one-dimens...
Autores principales: | Chen, Xi, Kopsaftopoulos, Fotis, Wu, Qi, Ren, He, Chang, Fu-Kuo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6358821/ https://www.ncbi.nlm.nih.gov/pubmed/30641961 http://dx.doi.org/10.3390/s19020275 |
Ejemplares similares
-
Flight State Identification of a Self-Sensing Wing via an Improved Feature Selection Method and Machine Learning Approaches
por: Chen, Xi, et al.
Publicado: (2018) -
Stochastic Identification of Guided Wave Propagation under Ambient Temperature via Non-Stationary Time Series Models
por: Ahmed, Shabbir, et al.
Publicado: (2021) -
Flight behaviour monitoring and quantification of aedes aegypti using convolution neural network
por: Javed, Nouman, et al.
Publicado: (2023) -
Stamping Monitoring by Using an Adaptive 1D Convolutional Neural Network
por: Huang, Chih-Yung, et al.
Publicado: (2021) -
Combining convolutional neural networks and self-attention for fundus diseases identification
por: Wang, Keya, et al.
Publicado: (2023)