Cargando…

A Fiber Optic Ultrasonic Sensing System for High Temperature Monitoring Using Optically Generated Ultrasonic Waves

This paper presents the design, fabrication, and characterization of a novel fiber optic ultrasonic sensing system based on the photoacoustic (PA) ultrasound generation principle and Fabry-Perot interferometer principle for high temperature monitoring applications. The velocity of a sound wave trave...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Jingcheng, Guo, Xu, Du, Cong, Cao, Chengyu, Wang, Xingwei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6358833/
https://www.ncbi.nlm.nih.gov/pubmed/30669488
http://dx.doi.org/10.3390/s19020404
Descripción
Sumario:This paper presents the design, fabrication, and characterization of a novel fiber optic ultrasonic sensing system based on the photoacoustic (PA) ultrasound generation principle and Fabry-Perot interferometer principle for high temperature monitoring applications. The velocity of a sound wave traveling in a medium is proportional to the medium’s temperature. The fiber optic ultrasonic sensing system was applied to measure the change of the velocity of sound. A fiber optic ultrasonic generator and a Fabry-Perot fiber sensor were used as the signal generator and receiver, respectively. A carbon black-polydimethylsiloxane (PDMS) material was utilized as the photoacoustic material for the fiber optic ultrasonic generator. Two tests were performed. The system verification test proves the ultrasound sensing capability. The high temperature test validates the high temperature measurement capability. The sensing system survived 700 °C. It successfully detects the ultrasonic signal and got the temperature measurements. The test results agreed with the reference sensor data. Two potential industry applications of fiber optic ultrasonic sensing system are, it could serve as an acoustic pyrometer for temperature field monitoring in an industrial combustion facility, and it could be used for exhaust gas temperature monitoring for a turbine engine.