Cargando…

Stress Marks on the Genome: Use or Lose?

Oxidative stress and the resulting damage to DNA are inevitable consequence of endogenous physiological processes further amplified by cellular responses to environmental exposures. If left unrepaired, oxidative DNA lesions can block essential processes such as transcription and replication or can i...

Descripción completa

Detalles Bibliográficos
Autores principales: Bokhari, Bayan, Sharma, Sudha
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6358951/
https://www.ncbi.nlm.nih.gov/pubmed/30654540
http://dx.doi.org/10.3390/ijms20020364
Descripción
Sumario:Oxidative stress and the resulting damage to DNA are inevitable consequence of endogenous physiological processes further amplified by cellular responses to environmental exposures. If left unrepaired, oxidative DNA lesions can block essential processes such as transcription and replication or can induce mutations. Emerging data also indicate that oxidative base modifications such as 8-oxoG in gene promoters may serve as epigenetic marks, and/or provide a platform for coordination of the initial steps of DNA repair and the assembly of the transcriptional machinery to launch adequate gene expression alterations. Here, we briefly review the current understanding of oxidative lesions in genome stability maintenance and regulation of basal and inducible transcription.