Cargando…
Dopamine/2-Phenylethylamine Sensitivity of Ion-Selective Electrodes Based on Bifunctional-Symmetrical Boron Receptors
Piperazine-based compounds bearing two phenylboronic acid or two benzoxaborole groups (PBPA and PBBB) were applied as dopamine receptors in polymeric membranes (PVC/DOS) of ion-selective electrodes. The potentiometric sensitivity and selectivity of the sensors towards dopamine were evaluated and com...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6358993/ https://www.ncbi.nlm.nih.gov/pubmed/30642018 http://dx.doi.org/10.3390/s19020283 |
Sumario: | Piperazine-based compounds bearing two phenylboronic acid or two benzoxaborole groups (PBPA and PBBB) were applied as dopamine receptors in polymeric membranes (PVC/DOS) of ion-selective electrodes. The potentiometric sensitivity and selectivity of the sensors towards dopamine were evaluated and compared with the results obtained for 2-phenylethylamine. Since the developed electrodes displayed strong interference from 2-phenylethylamine, single-molecule geometry optimizations were performed using the density functional theory (DFT) method in order to investigate the origin of dopamine/2-phenylethylamine selectivity. The results indicated that phenylboronic acid and benzoxaborole receptors bind dopamine mainly through the dative B–N bond (like 2-phenylethylamine) and the potentiometric selectivity is mainly governed by the higher lipophilicity of 2-phenylethylamine. |
---|