Cargando…
An Unbalanced Weighted Sequential Fusing Multi-Sensor GM-PHD Algorithm
In this paper, we study the multi-sensor multi-target tracking problem in the formulation of random finite sets. The Gaussian Mixture probability hypothesis density (GM-PHD) method is employed to formulate the sequential fusing multi-sensor GM-PHD (SFMGM-PHD) algorithm. First, the GM-PHD is applied...
Autores principales: | Shen-Tu, Han, Qian, Hanming, Peng, Dongliang, Guo, Yunfei, Luo, Ji-An |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6359048/ https://www.ncbi.nlm.nih.gov/pubmed/30658455 http://dx.doi.org/10.3390/s19020366 |
Ejemplares similares
-
Improved Bearings-Only Multi-Target Tracking with GM-PHD Filtering
por: Zhang, Qian, et al.
Publicado: (2016) -
Multi-Feature Matching GM-PHD Filter for Radar Multi-Target Tracking
por: Tao, Jin, et al.
Publicado: (2022) -
Cooperative Localization for Multi-AUVs Based on GM-PHD Filters and Information Entropy Theory
por: Zhang, Lichuan, et al.
Publicado: (2017) -
Multisensor Multi-Target Tracking Based on GM-PHD Using Out-Of-Sequence Measurements
por: Liu, Meiqin, et al.
Publicado: (2019) -
Tracking Multiple Video Targets with an Improved GM-PHD Tracker
por: Zhou, Xiaolong, et al.
Publicado: (2015)