Cargando…
Visible-Light Driven TiO(2) Photocatalyst Coated with Graphene Quantum Dots of Tunable Nitrogen Doping
Nitrogen doped graphene quantum dots (NGQDs) were successfully prepared via a hydrothermal method using citric acid and urea as the carbon and nitrogen precursors, respectively. Due to different post-treatment processes, the obtained NGQDs with different surface modifications exhibited blue light em...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6359080/ https://www.ncbi.nlm.nih.gov/pubmed/30669386 http://dx.doi.org/10.3390/molecules24020344 |
Sumario: | Nitrogen doped graphene quantum dots (NGQDs) were successfully prepared via a hydrothermal method using citric acid and urea as the carbon and nitrogen precursors, respectively. Due to different post-treatment processes, the obtained NGQDs with different surface modifications exhibited blue light emission, while their visible-light absorption was obviously different. To further understand the roles of nitrogen dopants and N-containing surface groups of NGQDs in the photocatalytic performance, their corresponding composites with TiO(2) were utilized to degrade RhB solutions under visible-light irradiation. A series of characterization and photocatalytic performance tests were carried out, which demonstrated that NGQDs play a significant role in enhancing visible-light driven photocatalytic activity and the carrier separation process. The enhanced photocatalytic activity of the NGQDs/TiO(2) composites can possibly be attributed to an enhanced visible light absorption ability, and an improved separation and transfer rate of photogenerated carriers. |
---|