Cargando…

Lectin Sequence Distribution in QTLs from Rice (Oryza sativa) Suggest a Role in Morphological Traits and Stress Responses

Rice (Oryza sativa) is one of the main staple crops worldwide but suffers from important yield losses due to different abiotic and biotic stresses. Analysis of quantitative trait loci (QTL) is a classical genetic method which enables the creation of more resistant cultivars but does not yield inform...

Descripción completa

Detalles Bibliográficos
Autores principales: Tsaneva, Mariya, De Schutter, Kristof, Verstraeten, Bruno, Van Damme, Els J.M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6359108/
https://www.ncbi.nlm.nih.gov/pubmed/30669545
http://dx.doi.org/10.3390/ijms20020437
Descripción
Sumario:Rice (Oryza sativa) is one of the main staple crops worldwide but suffers from important yield losses due to different abiotic and biotic stresses. Analysis of quantitative trait loci (QTL) is a classical genetic method which enables the creation of more resistant cultivars but does not yield information on the genes directly involved or responsible for the desired traits. Lectins are known as proteins with diverse functions in plants. Some of them are abundant proteins in seeds and are considered as storage/defense proteins while other lectins are known as stress-inducible proteins, implicated in stress perception and signal transduction as part of plant innate immunity. We investigated the distribution of lectin sequences in different QTL related to stress tolerance/resistance, morphology, and physiology through mapping of the lectin sequences and QTL regions on the chromosomes and subsequent statistical analysis. Furthermore, the domain structure and evolutionary relationships of the lectins in O. sativa spp. indica and japonica were investigated. Our results revealed that lectin sequences are statistically overrepresented in QTLs for (a)biotic resistance/tolerance as well as in QTLs related to economically important traits such as eating quality and sterility. These findings contribute to the characterization of the QTL sequences and can provide valuable information to the breeders.