Cargando…
Bio-Molecular Applications of Recent Developments in Optical Tweezers
In the past three decades, the ability to optically manipulate biomolecules has spurred a new era of medical and biophysical research. Optical tweezers (OT) have enabled experimenters to trap, sort, and probe cells, as well as discern the structural dynamics of proteins and nucleic acids at single m...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6359149/ https://www.ncbi.nlm.nih.gov/pubmed/30641944 http://dx.doi.org/10.3390/biom9010023 |
_version_ | 1783392164112236544 |
---|---|
author | Choudhary, Dhawal Mossa, Alessandro Jadhav, Milind Cecconi, Ciro |
author_facet | Choudhary, Dhawal Mossa, Alessandro Jadhav, Milind Cecconi, Ciro |
author_sort | Choudhary, Dhawal |
collection | PubMed |
description | In the past three decades, the ability to optically manipulate biomolecules has spurred a new era of medical and biophysical research. Optical tweezers (OT) have enabled experimenters to trap, sort, and probe cells, as well as discern the structural dynamics of proteins and nucleic acids at single molecule level. The steady improvement in OT’s resolving power has progressively pushed the envelope of their applications; there are, however, some inherent limitations that are prompting researchers to look for alternatives to the conventional techniques. To begin with, OT are restricted by their one-dimensional approach, which makes it difficult to conjure an exhaustive three-dimensional picture of biological systems. The high-intensity trapping laser can damage biological samples, a fact that restricts the feasibility of in vivo applications. Finally, direct manipulation of biological matter at nanometer scale remains a significant challenge for conventional OT. A significant amount of literature has been dedicated in the last 10 years to address the aforementioned shortcomings. Innovations in laser technology and advances in various other spheres of applied physics have been capitalized upon to evolve the next generation OT systems. In this review, we elucidate a few of these developments, with particular focus on their biological applications. The manipulation of nanoscopic objects has been achieved by means of plasmonic optical tweezers (POT), which utilize localized surface plasmons to generate optical traps with enhanced trapping potential, and photonic crystal optical tweezers (PhC OT), which attain the same goal by employing different photonic crystal geometries. Femtosecond optical tweezers (fs OT), constructed by replacing the continuous wave (cw) laser source with a femtosecond laser, promise to greatly reduce the damage to living samples. Finally, one way to transcend the one-dimensional nature of the data gained by OT is to couple them to the other large family of single molecule tools, i.e., fluorescence-based imaging techniques. We discuss the distinct advantages of the aforementioned techniques as well as the alternative experimental perspective they provide in comparison to conventional OT. |
format | Online Article Text |
id | pubmed-6359149 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-63591492019-02-11 Bio-Molecular Applications of Recent Developments in Optical Tweezers Choudhary, Dhawal Mossa, Alessandro Jadhav, Milind Cecconi, Ciro Biomolecules Review In the past three decades, the ability to optically manipulate biomolecules has spurred a new era of medical and biophysical research. Optical tweezers (OT) have enabled experimenters to trap, sort, and probe cells, as well as discern the structural dynamics of proteins and nucleic acids at single molecule level. The steady improvement in OT’s resolving power has progressively pushed the envelope of their applications; there are, however, some inherent limitations that are prompting researchers to look for alternatives to the conventional techniques. To begin with, OT are restricted by their one-dimensional approach, which makes it difficult to conjure an exhaustive three-dimensional picture of biological systems. The high-intensity trapping laser can damage biological samples, a fact that restricts the feasibility of in vivo applications. Finally, direct manipulation of biological matter at nanometer scale remains a significant challenge for conventional OT. A significant amount of literature has been dedicated in the last 10 years to address the aforementioned shortcomings. Innovations in laser technology and advances in various other spheres of applied physics have been capitalized upon to evolve the next generation OT systems. In this review, we elucidate a few of these developments, with particular focus on their biological applications. The manipulation of nanoscopic objects has been achieved by means of plasmonic optical tweezers (POT), which utilize localized surface plasmons to generate optical traps with enhanced trapping potential, and photonic crystal optical tweezers (PhC OT), which attain the same goal by employing different photonic crystal geometries. Femtosecond optical tweezers (fs OT), constructed by replacing the continuous wave (cw) laser source with a femtosecond laser, promise to greatly reduce the damage to living samples. Finally, one way to transcend the one-dimensional nature of the data gained by OT is to couple them to the other large family of single molecule tools, i.e., fluorescence-based imaging techniques. We discuss the distinct advantages of the aforementioned techniques as well as the alternative experimental perspective they provide in comparison to conventional OT. MDPI 2019-01-11 /pmc/articles/PMC6359149/ /pubmed/30641944 http://dx.doi.org/10.3390/biom9010023 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Choudhary, Dhawal Mossa, Alessandro Jadhav, Milind Cecconi, Ciro Bio-Molecular Applications of Recent Developments in Optical Tweezers |
title | Bio-Molecular Applications of Recent Developments in Optical Tweezers |
title_full | Bio-Molecular Applications of Recent Developments in Optical Tweezers |
title_fullStr | Bio-Molecular Applications of Recent Developments in Optical Tweezers |
title_full_unstemmed | Bio-Molecular Applications of Recent Developments in Optical Tweezers |
title_short | Bio-Molecular Applications of Recent Developments in Optical Tweezers |
title_sort | bio-molecular applications of recent developments in optical tweezers |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6359149/ https://www.ncbi.nlm.nih.gov/pubmed/30641944 http://dx.doi.org/10.3390/biom9010023 |
work_keys_str_mv | AT choudharydhawal biomolecularapplicationsofrecentdevelopmentsinopticaltweezers AT mossaalessandro biomolecularapplicationsofrecentdevelopmentsinopticaltweezers AT jadhavmilind biomolecularapplicationsofrecentdevelopmentsinopticaltweezers AT cecconiciro biomolecularapplicationsofrecentdevelopmentsinopticaltweezers |