Cargando…
Evaluation of Machine Learning Approaches to Predict Soil Organic Matter and pH Using vis-NIR Spectra
Soil organic matter (SOM) and pH are essential soil fertility indictors of paddy soil in the middle-lower Yangtze Plain. Rapid, non-destructive and accurate determination of SOM and pH is vital to preventing soil degradation caused by inappropriate land management practices. Visible-near infrared (v...
Autores principales: | Yang, Meihua, Xu, Dongyun, Chen, Songchao, Li, Hongyi, Shi, Zhou |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6359233/ https://www.ncbi.nlm.nih.gov/pubmed/30641879 http://dx.doi.org/10.3390/s19020263 |
Ejemplares similares
-
Combining ancillary soil data with VisNIR spectra to improve predictions of organic and inorganic carbon content of soils
por: Filippi, Patrick, et al.
Publicado: (2018) -
Machine-learning-based quantitative estimation of soil organic carbon content by VIS/NIR spectroscopy
por: Ding, Jianli, et al.
Publicado: (2018) -
Comparison of Depth-Specific Prediction of Soil Properties: MIR vs. Vis-NIR Spectroscopy
por: Shi, Zhan, et al.
Publicado: (2023) -
Evaluation of Optimized Preprocessing and Modeling Algorithms for Prediction of Soil Properties Using VIS-NIR Spectroscopy
por: Vestergaard, Rebecca-Jo, et al.
Publicado: (2021) -
Predicting Soil Salinity with Vis–NIR Spectra after Removing the Effects of Soil Moisture Using External Parameter Orthogonalization
por: Liu, Ya, et al.
Publicado: (2015)