Cargando…
Integrating TiO(2)/SiO(2) into Electrospun Carbon Nanofibers towards Superior Lithium Storage Performance
In order to overcome the poor electrical conductivity of titania (TiO(2)) and silica (SiO(2)) anode materials for lithium ion batteries (LIBs), we herein report a facile preparation of integrated titania–silica–carbon (TSC) nanofibers via electrospinning and subsequent heat-treatment. Both titania a...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6359262/ https://www.ncbi.nlm.nih.gov/pubmed/30621296 http://dx.doi.org/10.3390/nano9010068 |
_version_ | 1783392200324808704 |
---|---|
author | Liu, Wenxing Yao, Tianhao Xie, Sanmu She, Yiyi Wang, Hongkang |
author_facet | Liu, Wenxing Yao, Tianhao Xie, Sanmu She, Yiyi Wang, Hongkang |
author_sort | Liu, Wenxing |
collection | PubMed |
description | In order to overcome the poor electrical conductivity of titania (TiO(2)) and silica (SiO(2)) anode materials for lithium ion batteries (LIBs), we herein report a facile preparation of integrated titania–silica–carbon (TSC) nanofibers via electrospinning and subsequent heat-treatment. Both titania and silica are successfully embedded into the conductive N-doped carbon nanofibers, and they synergistically reinforce the overall strength of the TSC nanofibers after annealing (Note that titania–carbon or silica–carbon nanofibers cannot be obtained under the same condition). When applied as an anode for LIBs, the TSC nanofiber electrode shows superior cycle stability (502 mAh/g at 100 mA/g after 300 cycles) and high rate capability (572, 518, 421, 334, and 232 mAh/g each after 10 cycles at 100, 200, 500, 1000 and 2000 mA/g, respectively). Our results demonstrate that integration of titania/silica into N-doped carbon nanofibers greatly enhances the electrode conductivity and the overall structural stability of the TSC nanofibers upon repeated lithiation/delithiation cycling. |
format | Online Article Text |
id | pubmed-6359262 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-63592622019-02-06 Integrating TiO(2)/SiO(2) into Electrospun Carbon Nanofibers towards Superior Lithium Storage Performance Liu, Wenxing Yao, Tianhao Xie, Sanmu She, Yiyi Wang, Hongkang Nanomaterials (Basel) Article In order to overcome the poor electrical conductivity of titania (TiO(2)) and silica (SiO(2)) anode materials for lithium ion batteries (LIBs), we herein report a facile preparation of integrated titania–silica–carbon (TSC) nanofibers via electrospinning and subsequent heat-treatment. Both titania and silica are successfully embedded into the conductive N-doped carbon nanofibers, and they synergistically reinforce the overall strength of the TSC nanofibers after annealing (Note that titania–carbon or silica–carbon nanofibers cannot be obtained under the same condition). When applied as an anode for LIBs, the TSC nanofiber electrode shows superior cycle stability (502 mAh/g at 100 mA/g after 300 cycles) and high rate capability (572, 518, 421, 334, and 232 mAh/g each after 10 cycles at 100, 200, 500, 1000 and 2000 mA/g, respectively). Our results demonstrate that integration of titania/silica into N-doped carbon nanofibers greatly enhances the electrode conductivity and the overall structural stability of the TSC nanofibers upon repeated lithiation/delithiation cycling. MDPI 2019-01-05 /pmc/articles/PMC6359262/ /pubmed/30621296 http://dx.doi.org/10.3390/nano9010068 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Liu, Wenxing Yao, Tianhao Xie, Sanmu She, Yiyi Wang, Hongkang Integrating TiO(2)/SiO(2) into Electrospun Carbon Nanofibers towards Superior Lithium Storage Performance |
title | Integrating TiO(2)/SiO(2) into Electrospun Carbon Nanofibers towards Superior Lithium Storage Performance |
title_full | Integrating TiO(2)/SiO(2) into Electrospun Carbon Nanofibers towards Superior Lithium Storage Performance |
title_fullStr | Integrating TiO(2)/SiO(2) into Electrospun Carbon Nanofibers towards Superior Lithium Storage Performance |
title_full_unstemmed | Integrating TiO(2)/SiO(2) into Electrospun Carbon Nanofibers towards Superior Lithium Storage Performance |
title_short | Integrating TiO(2)/SiO(2) into Electrospun Carbon Nanofibers towards Superior Lithium Storage Performance |
title_sort | integrating tio(2)/sio(2) into electrospun carbon nanofibers towards superior lithium storage performance |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6359262/ https://www.ncbi.nlm.nih.gov/pubmed/30621296 http://dx.doi.org/10.3390/nano9010068 |
work_keys_str_mv | AT liuwenxing integratingtio2sio2intoelectrospuncarbonnanofiberstowardssuperiorlithiumstorageperformance AT yaotianhao integratingtio2sio2intoelectrospuncarbonnanofiberstowardssuperiorlithiumstorageperformance AT xiesanmu integratingtio2sio2intoelectrospuncarbonnanofiberstowardssuperiorlithiumstorageperformance AT sheyiyi integratingtio2sio2intoelectrospuncarbonnanofiberstowardssuperiorlithiumstorageperformance AT wanghongkang integratingtio2sio2intoelectrospuncarbonnanofiberstowardssuperiorlithiumstorageperformance |