Cargando…
Multi-Parametric Analysis of Reliability and Energy Consumption in IoT: A Deep Learning Approach
Small-to-medium scale smart buildings are an important part of the Internet of Things (IoT). Wireless Sensor Networks (WSNs) are the major enabler for smart control in such environments. Reliability is among the key performance requirements for many loss-sensitive IoT and WSN applications, while Ene...
Autores principales: | Ateeq, Muhammad, Ishmanov, Farruh, Afzal, Muhammad Khalil, Naeem, Muhammad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6359337/ https://www.ncbi.nlm.nih.gov/pubmed/30646555 http://dx.doi.org/10.3390/s19020309 |
Ejemplares similares
-
Exploiting Layered Multi-Path Routing Protocols to Avoid Void Hole Regions for Reliable Data Delivery and Efficient Energy Management for IoT-Enabled Underwater WSNs
por: Butt, Suhail Ashfaq, et al.
Publicado: (2019) -
Geographic and Opportunistic Recovery with Depth and Power Transmission Adjustment for Energy-Efficiency and Void Hole Alleviation in UWSNs
por: Mateen, Abdul, et al.
Publicado: (2019) -
An Optimized Hyperparameter of Convolutional Neural Network Algorithm for Bug Severity Prediction in Alzheimer's-Based IoT System
por: Yousaf, Iqra, et al.
Publicado: (2022) -
Machine learning and deep learning approaches in IoT
por: Javed, Abqa, et al.
Publicado: (2023) -
Resource Management in Energy Harvesting Cooperative IoT Network under QoS Constraints
por: Amjad, Maliha, et al.
Publicado: (2018)