Cargando…
Mesoporous Carbon and Ceria Nanoparticles Composite Modified Electrode for the Simultaneous Determination of Hydroquinone and Catechol
In this work, a novel material that was based on mesoporous carbon and ceria nanoparticles composite (MC–CeNPs) was synthesized, and a modified electrode was fabricated. When compared with a bare glass electrode, the modified electrode exhibited enhanced electrocatalytic activity towards the simulta...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6359349/ https://www.ncbi.nlm.nih.gov/pubmed/30609813 http://dx.doi.org/10.3390/nano9010054 |
_version_ | 1783392222626971648 |
---|---|
author | Liu, Dong Li, Fan Yu, Dezhong Yu, Junxia Ding, Yigang |
author_facet | Liu, Dong Li, Fan Yu, Dezhong Yu, Junxia Ding, Yigang |
author_sort | Liu, Dong |
collection | PubMed |
description | In this work, a novel material that was based on mesoporous carbon and ceria nanoparticles composite (MC–CeNPs) was synthesized, and a modified electrode was fabricated. When compared with a bare glass electrode, the modified electrode exhibited enhanced electrocatalytic activity towards the simultaneous determination of hydroquinone (HQ) and catechol (CC), which is attributed to the large specific area and fast electron transfer ability of MC–CeNPs. Additionally, it exhibited linear response ranges in the concentrations of 0.5–500 µM and 0.4–320 µM for HQ and CC, with detection limits (S/N = 3) of 0.24 µM and 0.13 µM, respectively. This method also displayed good stability and reproducibility. Furthermore, the modified electrode was applied to the simultaneous determination of HQ and CC in tap and lake water samples, and it exhibited satisfactory recovery levels of 98.5–103.2% and 98–103.4% for HQ and CC, respectively. All of these results indicate that a MC–CeNPs modified electrode could be a candidate for the determination of HQ and CC. |
format | Online Article Text |
id | pubmed-6359349 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-63593492019-02-06 Mesoporous Carbon and Ceria Nanoparticles Composite Modified Electrode for the Simultaneous Determination of Hydroquinone and Catechol Liu, Dong Li, Fan Yu, Dezhong Yu, Junxia Ding, Yigang Nanomaterials (Basel) Article In this work, a novel material that was based on mesoporous carbon and ceria nanoparticles composite (MC–CeNPs) was synthesized, and a modified electrode was fabricated. When compared with a bare glass electrode, the modified electrode exhibited enhanced electrocatalytic activity towards the simultaneous determination of hydroquinone (HQ) and catechol (CC), which is attributed to the large specific area and fast electron transfer ability of MC–CeNPs. Additionally, it exhibited linear response ranges in the concentrations of 0.5–500 µM and 0.4–320 µM for HQ and CC, with detection limits (S/N = 3) of 0.24 µM and 0.13 µM, respectively. This method also displayed good stability and reproducibility. Furthermore, the modified electrode was applied to the simultaneous determination of HQ and CC in tap and lake water samples, and it exhibited satisfactory recovery levels of 98.5–103.2% and 98–103.4% for HQ and CC, respectively. All of these results indicate that a MC–CeNPs modified electrode could be a candidate for the determination of HQ and CC. MDPI 2019-01-03 /pmc/articles/PMC6359349/ /pubmed/30609813 http://dx.doi.org/10.3390/nano9010054 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Liu, Dong Li, Fan Yu, Dezhong Yu, Junxia Ding, Yigang Mesoporous Carbon and Ceria Nanoparticles Composite Modified Electrode for the Simultaneous Determination of Hydroquinone and Catechol |
title | Mesoporous Carbon and Ceria Nanoparticles Composite Modified Electrode for the Simultaneous Determination of Hydroquinone and Catechol |
title_full | Mesoporous Carbon and Ceria Nanoparticles Composite Modified Electrode for the Simultaneous Determination of Hydroquinone and Catechol |
title_fullStr | Mesoporous Carbon and Ceria Nanoparticles Composite Modified Electrode for the Simultaneous Determination of Hydroquinone and Catechol |
title_full_unstemmed | Mesoporous Carbon and Ceria Nanoparticles Composite Modified Electrode for the Simultaneous Determination of Hydroquinone and Catechol |
title_short | Mesoporous Carbon and Ceria Nanoparticles Composite Modified Electrode for the Simultaneous Determination of Hydroquinone and Catechol |
title_sort | mesoporous carbon and ceria nanoparticles composite modified electrode for the simultaneous determination of hydroquinone and catechol |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6359349/ https://www.ncbi.nlm.nih.gov/pubmed/30609813 http://dx.doi.org/10.3390/nano9010054 |
work_keys_str_mv | AT liudong mesoporouscarbonandceriananoparticlescompositemodifiedelectrodeforthesimultaneousdeterminationofhydroquinoneandcatechol AT lifan mesoporouscarbonandceriananoparticlescompositemodifiedelectrodeforthesimultaneousdeterminationofhydroquinoneandcatechol AT yudezhong mesoporouscarbonandceriananoparticlescompositemodifiedelectrodeforthesimultaneousdeterminationofhydroquinoneandcatechol AT yujunxia mesoporouscarbonandceriananoparticlescompositemodifiedelectrodeforthesimultaneousdeterminationofhydroquinoneandcatechol AT dingyigang mesoporouscarbonandceriananoparticlescompositemodifiedelectrodeforthesimultaneousdeterminationofhydroquinoneandcatechol |