Cargando…
Computational Investigation of Tuning the Electron-Donating Ability in Metal-Free Organic Dyes Featuring an Azobenzene Spacer for Dye-Sensitized Solar Cells
A series of donor–π-conjugated spacer–acceptor (D–π–A) organic dyes featuring an azobenzene spacer were designed as chromic dyes and investigated computationally. The electron-donating strength was modified by introducing electron-donating units to the donor side. In particular, the trans–cis isomer...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6359366/ https://www.ncbi.nlm.nih.gov/pubmed/30669414 http://dx.doi.org/10.3390/nano9010119 |
Sumario: | A series of donor–π-conjugated spacer–acceptor (D–π–A) organic dyes featuring an azobenzene spacer were designed as chromic dyes and investigated computationally. The electron-donating strength was modified by introducing electron-donating units to the donor side. In particular, the trans–cis isomerization of the azobenzene-based dyes and its effect on the optical and electronic properties were further scrutinized. In both trans and cis conformers, a gradual increase in electron-donating strength promoted the natural charge separation between donor and acceptor moieties, thereby allowing the absorption of a longer wavelength of visible light. Importantly, the conformational change of the azobenzene bridge resulted in different absorption spectra and light-harvesting properties. The azobenzene-based dyes will open up a new research path for chromic dye-sensitized solar cells. |
---|