Cargando…
Inferring Static Hand Poses from a Low-Cost Non-Intrusive sEMG Sensor
Every year, a significant number of people lose a body part in an accident, through sickness or in high-risk manual jobs. Several studies and research works have tried to reduce the constraints and risks in their lives through the use of technology. This work proposes a learning-based approach that...
Autores principales: | Nasri, Nadia, Orts-Escolano, Sergio, Gomez-Donoso, Francisco, Cazorla, Miguel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6359473/ https://www.ncbi.nlm.nih.gov/pubmed/30658480 http://dx.doi.org/10.3390/s19020371 |
Ejemplares similares
-
An sEMG-Controlled 3D Game for Rehabilitation Therapies: Real-Time Time Hand Gesture Recognition Using Deep Learning Techniques
por: Nasri, Nadia, et al.
Publicado: (2020) -
Is the Use of a Low-Cost sEMG Sensor Valid to Measure Muscle Fatigue?
por: del Toro, Sergio Fuentes, et al.
Publicado: (2019) -
Simultaneous sEMG Classification of Hand/Wrist Gestures and Forces
por: Leone, Francesca, et al.
Publicado: (2019) -
sEMG Signal Acquisition Strategy towards Hand FES Control
por: Toledo-Peral, Cinthya Lourdes, et al.
Publicado: (2018) -
sEMG Sensor Using Polypyrrole-Coated Nonwoven Fabric Sheet for Practical Control of Prosthetic Hand
por: Jiang, Yinlai, et al.
Publicado: (2017)