Cargando…
Reduce Calibration Time in Motor Imagery Using Spatially Regularized Symmetric Positives-Definite Matrices Based Classification
Electroencephalogram (EEG) based motor imagery brain–computer interface (BCI) requires large number of subject specific training trials to calibrate the system for a new subject. This results in long calibration time that limits the BCI usage in practice. One major challenge in the development of a...
Autores principales: | Singh, Amardeep, Lal, Sunil, Guesgen, Hans W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6359529/ https://www.ncbi.nlm.nih.gov/pubmed/30658523 http://dx.doi.org/10.3390/s19020379 |
Ejemplares similares
-
A Comprehensive Review on Critical Issues and Possible Solutions of Motor Imagery Based Electroencephalography Brain-Computer Interface
por: Singh, Amardeep, et al.
Publicado: (2021) -
Common spatial pattern for classification of loving kindness meditation EEG for single and multiple sessions
por: Liyanagedera, Nalinda D., et al.
Publicado: (2023) -
mbend: an R package for bending non-positive-definite symmetric matrices to positive-definite
por: Nilforooshan, Mohammad Ali
Publicado: (2020) -
Approximate Joint Diagonalization and Geometric Mean of Symmetric Positive Definite Matrices
por: Congedo, Marco, et al.
Publicado: (2015) -
Regularized RKHS-Based Subspace Learning for Motor Imagery Classification
por: Jiang, Linzhi, et al.
Publicado: (2022)