Cargando…
Noise Estimation for Image Sensor Based on Local Entropy and Median Absolute Deviation
Noise estimation for image sensor is a key technique in many image pre-processing applications such as blind de-noising. The existing noise estimation methods for additive white Gaussian noise (AWGN) and Poisson-Gaussian noise (PGN) may underestimate or overestimate the noise level in the situation...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6359535/ https://www.ncbi.nlm.nih.gov/pubmed/30654489 http://dx.doi.org/10.3390/s19020339 |
_version_ | 1783392276615004160 |
---|---|
author | Li, Yongsong Li, Zhengzhou Wei, Kai Xiong, Weiqi Yu, Jiangpeng Qi, Bo |
author_facet | Li, Yongsong Li, Zhengzhou Wei, Kai Xiong, Weiqi Yu, Jiangpeng Qi, Bo |
author_sort | Li, Yongsong |
collection | PubMed |
description | Noise estimation for image sensor is a key technique in many image pre-processing applications such as blind de-noising. The existing noise estimation methods for additive white Gaussian noise (AWGN) and Poisson-Gaussian noise (PGN) may underestimate or overestimate the noise level in the situation of a heavy textured scene image. To cope with this problem, a novel homogenous block-based noise estimation method is proposed to calculate these noises in this paper. Initially, the noisy image is transformed into the map of local gray statistic entropy (LGSE), and the weakly textured image blocks can be selected with several biggest LGSE values in a descending order. Then, the Haar wavelet-based local median absolute deviation (HLMAD) is presented to compute the local variance of these selected homogenous blocks. After that, the noise parameters can be estimated accurately by applying the maximum likelihood estimation (MLE) to analyze the local mean and variance of selected blocks. Extensive experiments on synthesized noised images are induced and the experimental results show that the proposed method could not only more accurately estimate the noise of various scene images with different noise levels than the compared state-of-the-art methods, but also promote the performance of the blind de-noising algorithm. |
format | Online Article Text |
id | pubmed-6359535 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-63595352019-02-06 Noise Estimation for Image Sensor Based on Local Entropy and Median Absolute Deviation Li, Yongsong Li, Zhengzhou Wei, Kai Xiong, Weiqi Yu, Jiangpeng Qi, Bo Sensors (Basel) Article Noise estimation for image sensor is a key technique in many image pre-processing applications such as blind de-noising. The existing noise estimation methods for additive white Gaussian noise (AWGN) and Poisson-Gaussian noise (PGN) may underestimate or overestimate the noise level in the situation of a heavy textured scene image. To cope with this problem, a novel homogenous block-based noise estimation method is proposed to calculate these noises in this paper. Initially, the noisy image is transformed into the map of local gray statistic entropy (LGSE), and the weakly textured image blocks can be selected with several biggest LGSE values in a descending order. Then, the Haar wavelet-based local median absolute deviation (HLMAD) is presented to compute the local variance of these selected homogenous blocks. After that, the noise parameters can be estimated accurately by applying the maximum likelihood estimation (MLE) to analyze the local mean and variance of selected blocks. Extensive experiments on synthesized noised images are induced and the experimental results show that the proposed method could not only more accurately estimate the noise of various scene images with different noise levels than the compared state-of-the-art methods, but also promote the performance of the blind de-noising algorithm. MDPI 2019-01-16 /pmc/articles/PMC6359535/ /pubmed/30654489 http://dx.doi.org/10.3390/s19020339 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Li, Yongsong Li, Zhengzhou Wei, Kai Xiong, Weiqi Yu, Jiangpeng Qi, Bo Noise Estimation for Image Sensor Based on Local Entropy and Median Absolute Deviation |
title | Noise Estimation for Image Sensor Based on Local Entropy and Median Absolute Deviation |
title_full | Noise Estimation for Image Sensor Based on Local Entropy and Median Absolute Deviation |
title_fullStr | Noise Estimation for Image Sensor Based on Local Entropy and Median Absolute Deviation |
title_full_unstemmed | Noise Estimation for Image Sensor Based on Local Entropy and Median Absolute Deviation |
title_short | Noise Estimation for Image Sensor Based on Local Entropy and Median Absolute Deviation |
title_sort | noise estimation for image sensor based on local entropy and median absolute deviation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6359535/ https://www.ncbi.nlm.nih.gov/pubmed/30654489 http://dx.doi.org/10.3390/s19020339 |
work_keys_str_mv | AT liyongsong noiseestimationforimagesensorbasedonlocalentropyandmedianabsolutedeviation AT lizhengzhou noiseestimationforimagesensorbasedonlocalentropyandmedianabsolutedeviation AT weikai noiseestimationforimagesensorbasedonlocalentropyandmedianabsolutedeviation AT xiongweiqi noiseestimationforimagesensorbasedonlocalentropyandmedianabsolutedeviation AT yujiangpeng noiseestimationforimagesensorbasedonlocalentropyandmedianabsolutedeviation AT qibo noiseestimationforimagesensorbasedonlocalentropyandmedianabsolutedeviation |