Cargando…

A Small Aromatic Compound Has Antifungal Properties and Potential Anti-Inflammatory Effects against Intestinal Inflammation

Resistance of the opportunistic pathogen Candida albicans to antifungal drugs has increased significantly in recent years. After screening 55 potential antifungal compounds from a chemical library, 2,3-dihydroxy-4-methoxybenzaldehyde (DHMB) was identified as having potential antifungal activity. The...

Descripción completa

Detalles Bibliográficos
Autores principales: Bortolus, Clovis, Billamboz, Muriel, Charlet, Rogatien, Lecointe, Karine, Sendid, Boualem, Ghinet, Alina, Jawhara, Samir
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6359570/
https://www.ncbi.nlm.nih.gov/pubmed/30646601
http://dx.doi.org/10.3390/ijms20020321
Descripción
Sumario:Resistance of the opportunistic pathogen Candida albicans to antifungal drugs has increased significantly in recent years. After screening 55 potential antifungal compounds from a chemical library, 2,3-dihydroxy-4-methoxybenzaldehyde (DHMB) was identified as having potential antifungal activity. The properties of DHMB were then assessed in vitro and in vivo against C. albicans overgrowth and intestinal inflammation. Substitution on the aromatic ring of DHMB led to a strong decrease in its biological activity against C. albicans. The MIC of DHMB was highly effective at eliminating C. albicans when compared to that of caspofungin or fluconazole. Additionally, DHMB was also effective against clinically isolated fluconazole- or caspofungin-resistant C. albicans strains. DHMB was administered to animals at high doses. This compound was not cytotoxic and was well-tolerated. In experimental dextran sodium sulphate (DSS)-induced colitis in mice, DHMB reduced the clinical and histological score of inflammation and promoted the elimination of C. albicans from the gut. This finding was supported by a decrease in aerobic bacteria while anaerobic bacteria populations were re-established in mice treated with DHMB. DHMB is a small organic molecule with antifungal properties and anti-inflammatory activity by exerting protective effects on intestinal epithelial cells.