Cargando…

SPARX, a MIMO Array for Ground-Based Radar Interferometry

Ground-Based SAR Interferometry (GB-InSAR) is nowadays a proven technique widely used for slope monitoring in open pit mines and landslide control. Traditional GB-InSAR techniques involve transmitting and receiving antennas moving on a scanner to achieve the desired synthetic aperture. Mechanical mo...

Descripción completa

Detalles Bibliográficos
Autores principales: Michelini, Alberto, Coppi, Francesco, Bicci, Alberto, Alli, Giovanni
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6359603/
https://www.ncbi.nlm.nih.gov/pubmed/30634656
http://dx.doi.org/10.3390/s19020252
Descripción
Sumario:Ground-Based SAR Interferometry (GB-InSAR) is nowadays a proven technique widely used for slope monitoring in open pit mines and landslide control. Traditional GB-InSAR techniques involve transmitting and receiving antennas moving on a scanner to achieve the desired synthetic aperture. Mechanical movement limits the acquisition speed of the SAR image. There is a need for faster acquisition time as it plays an important role in correcting rapidly varying atmospheric effects. Also, a fast imaging radar can extend the applications to the measurement of vibrations of large structures. Furthermore, the mechanical assembly put constraints on the transportability and weight of the system. To overcome these limitations an electronically switched array would be preferable, which however faces enormous technological and cost difficulties associated to the large number of array elements needed. Imaging Multiple-Input Multiple Output (MIMO) radars can be used as a significant alternative to usual mechanical SAR and full array systems. This paper describes the ground-based X-band MIMO radar SPARX recently developed by IDS GeoRadar in order to overcome the limits of IDS GeoRadar’s well-established ground based interferometric SAR systems. The SPARX array consists of 16 transmit and 16 receive antennas, organized in independent sub-modules and geometrically arranged in order to synthesize an equally spaced virtual array of 256 elements.