Cargando…
Automated Recognition of Epileptic EEG States Using a Combination of Symlet Wavelet Processing, Gradient Boosting Machine, and Grid Search Optimizer
Automatic recognition methods for non-stationary electroencephalogram (EEG) data collected from EEG sensors play an essential role in neurological detection. The integrated approaches proposed in this study consist of Symlet wavelet processing, a gradient boosting machine, and a grid search optimize...
Autores principales: | Wang, Xiashuang, Gong, Guanghong, Li, Ni |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6359608/ https://www.ncbi.nlm.nih.gov/pubmed/30634406 http://dx.doi.org/10.3390/s19020219 |
Ejemplares similares
-
Detection Analysis of Epileptic EEG Using a Novel Random Forest Model Combined With Grid Search Optimization
por: Wang, Xiashuang, et al.
Publicado: (2019) -
Automatic Recognition of High-Density Epileptic EEG Using Support Vector Machine and Gradient-Boosting Decision Tree
por: He, Jiaxiu, et al.
Publicado: (2022) -
Epileptic seizure detection using EEG signals and extreme gradient boosting
por: Vanabelle, Paul, et al.
Publicado: (2020) -
Automated recognition of epilepsy from EEG signals using a combining space–time algorithm of CNN-LSTM
por: Wang, Xiashuang, et al.
Publicado: (2023) -
Detecting Epileptic Seizures in EEG Signals with Complementary Ensemble Empirical Mode Decomposition and Extreme Gradient Boosting
por: Wu, Jiang, et al.
Publicado: (2020)