Cargando…
MFA-Net: Motion Feature Augmented Network for Dynamic Hand Gesture Recognition from Skeletal Data †
Dynamic hand gesture recognition has attracted increasing attention because of its importance for human–computer interaction. In this paper, we propose a novel motion feature augmented network (MFA-Net) for dynamic hand gesture recognition from skeletal data. MFA-Net exploits motion features of fing...
Autores principales: | Chen, Xinghao, Wang, Guijin, Guo, Hengkai, Zhang, Cairong, Wang, Hang, Zhang, Li |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6359639/ https://www.ncbi.nlm.nih.gov/pubmed/30634583 http://dx.doi.org/10.3390/s19020239 |
Ejemplares similares
-
Data Augmentation of Surface Electromyography for Hand Gesture Recognition
por: Tsinganos, Panagiotis, et al.
Publicado: (2020) -
Human-Computer Interaction with Hand Gesture Recognition Using ResNet and MobileNet
por: Alnuaim, Abeer, et al.
Publicado: (2022) -
A PointNet-Based Solution for 3D Hand Gesture Recognition
por: Mirsu, Radu, et al.
Publicado: (2020) -
MGRA: Motion Gesture Recognition via Accelerometer
por: Hong, Feng, et al.
Publicado: (2016) -
Static hand gesture recognition based on hierarchical decision and classification of finger features
por: Li, Yunfeng, et al.
Publicado: (2022)