Cargando…

Physicochemical Properties and Storage Stability of Food Protein-Stabilized Nanoemulsions

This study investigated the preparation and properties of corn oil nanoemulsions stabilized by peanut protein isolate (PPI), rice bran protein isolate (RBPI), soybean protein isolate (SPI), and whey protein isolate (WPI). The mean droplet diameter of four protein-stabilized nanoemulsions prepared vi...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Yangyang, Jin, Hua, Sun, Xiaotong, Sun, Jingying, Liu, Chang, Liu, Chunhong, Xu, Jing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6359652/
https://www.ncbi.nlm.nih.gov/pubmed/30585224
http://dx.doi.org/10.3390/nano9010025
Descripción
Sumario:This study investigated the preparation and properties of corn oil nanoemulsions stabilized by peanut protein isolate (PPI), rice bran protein isolate (RBPI), soybean protein isolate (SPI), and whey protein isolate (WPI). The mean droplet diameter of four protein-stabilized nanoemulsions prepared via ultrasound method was less than 245 nm. PPI-stabilized nanoemulsions showed better stability for 4 weeks, while the mean droplet diameter of RBPI-stabilized nanoemulsions had exceeded 1000 nm during the third week of storage. Fourier transform infrared and interfacial tension (IT) analysis showed that the higher level of disordered structure and lower IT of proteins made the stability of nanoemulsions better. Moreover, bivariate correlation analysis discovered that α-helix (p < 0.01) and β-turn (p < 0.05) of proteins were related to the mean droplet diameter of nanoemulsions, the random coil (p < 0.05) was related to the zeta potential of nanoemulsions. This study provided new idea for the relationship between the structure of protein and properties of protein-stabilized nanoemulsions.