Cargando…
Fusion of Motif- and Spectrum-Related Features for Improved EEG-Based Emotion Recognition
Emotion recognition is a burgeoning field allowing for more natural human-machine interactions and interfaces. Electroencephalography (EEG) has shown to be a useful modality with which user emotional states can be measured and monitored, particularly primitives such as valence and arousal. In this p...
Autores principales: | Tiwari, Abhishek, Falk, Tiago H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6360048/ https://www.ncbi.nlm.nih.gov/pubmed/30800157 http://dx.doi.org/10.1155/2019/3076324 |
Ejemplares similares
-
EEG Emotion Recognition by Fusion of Multi-Scale Features
por: Du, Xiuli, et al.
Publicado: (2023) -
Fusion Graph Representation of EEG for Emotion Recognition
por: Li, Menghang, et al.
Publicado: (2023) -
Multi-method Fusion of Cross-Subject Emotion Recognition Based on High-Dimensional EEG Features
por: Yang, Fu, et al.
Publicado: (2019) -
CDBA: a novel multi-branch feature fusion model for EEG-based emotion recognition
por: Huang, Zhentao, et al.
Publicado: (2023) -
Fusion of Facial Expressions and EEG for Multimodal Emotion Recognition
por: Huang, Yongrui, et al.
Publicado: (2017)