Cargando…
High‐throughput isolation of circulating tumor DNA: a comparison of automated platforms
The emerging interest in circulating tumor DNA (ctDNA) analyses for clinical trials has necessitated the development of a high‐throughput method for fast, reproducible, and efficient isolation of ctDNA. Currently, the majority of ctDNA studies use the manual QIAamp (QA) platform to isolate DNA from...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6360376/ https://www.ncbi.nlm.nih.gov/pubmed/30516338 http://dx.doi.org/10.1002/1878-0261.12415 |
_version_ | 1783392469731246080 |
---|---|
author | van Dessel, Lisanne F. Vitale, Silvia R. Helmijr, Jean C. A. Wilting, Saskia M. van der Vlugt‐Daane, Michelle Oomen‐de Hoop, Esther Sleijfer, Stefan Martens, John W. M. Jansen, Maurice P. H. M. Lolkema, Martijn P. |
author_facet | van Dessel, Lisanne F. Vitale, Silvia R. Helmijr, Jean C. A. Wilting, Saskia M. van der Vlugt‐Daane, Michelle Oomen‐de Hoop, Esther Sleijfer, Stefan Martens, John W. M. Jansen, Maurice P. H. M. Lolkema, Martijn P. |
author_sort | van Dessel, Lisanne F. |
collection | PubMed |
description | The emerging interest in circulating tumor DNA (ctDNA) analyses for clinical trials has necessitated the development of a high‐throughput method for fast, reproducible, and efficient isolation of ctDNA. Currently, the majority of ctDNA studies use the manual QIAamp (QA) platform to isolate DNA from blood. The purpose of this study was to compare two competing automated DNA isolation platforms [Maxwell (MX) and QIAsymphony (QS)] to the current ‘gold standard’ QA to facilitate high‐throughput processing of samples in prospective trials. We obtained blood samples from healthy blood donors and metastatic cancer patients for plasma isolation. Total cell‐free DNA (cfDNA) quantity was assessed by TERT quantitative PCR. Recovery efficiency was investigated by quantitative PCR analysis of spiked‐in synthetic plant DNA. In addition, a β‐actin fragmentation assay was performed to determine the amount of contamination by genomic DNA from lysed leukocytes. ctDNA quality was assessed by digital PCR for somatic variant detection. cfDNA quantity and recovery efficiency were lowest using the MX platform, whereas QA and QS showed a comparable performance. All platforms preferentially isolated small (136 bp) DNA fragments over large (420 and 2000 bp) DNA fragments. Detection of the number variant and wild‐type molecules was most comparable between QA and QS. However, there was no significant difference in variant allele frequency comparing QS and MX to QA. In summary, we show that the QS platform has comparable performance to QA, the ‘gold standard’, and outperformed the MX platform depending on the readout used. We conclude that the QS can replace the more laborious QA platform, especially when high‐throughput cfDNA isolation is needed. |
format | Online Article Text |
id | pubmed-6360376 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-63603762019-02-14 High‐throughput isolation of circulating tumor DNA: a comparison of automated platforms van Dessel, Lisanne F. Vitale, Silvia R. Helmijr, Jean C. A. Wilting, Saskia M. van der Vlugt‐Daane, Michelle Oomen‐de Hoop, Esther Sleijfer, Stefan Martens, John W. M. Jansen, Maurice P. H. M. Lolkema, Martijn P. Mol Oncol Research Articles The emerging interest in circulating tumor DNA (ctDNA) analyses for clinical trials has necessitated the development of a high‐throughput method for fast, reproducible, and efficient isolation of ctDNA. Currently, the majority of ctDNA studies use the manual QIAamp (QA) platform to isolate DNA from blood. The purpose of this study was to compare two competing automated DNA isolation platforms [Maxwell (MX) and QIAsymphony (QS)] to the current ‘gold standard’ QA to facilitate high‐throughput processing of samples in prospective trials. We obtained blood samples from healthy blood donors and metastatic cancer patients for plasma isolation. Total cell‐free DNA (cfDNA) quantity was assessed by TERT quantitative PCR. Recovery efficiency was investigated by quantitative PCR analysis of spiked‐in synthetic plant DNA. In addition, a β‐actin fragmentation assay was performed to determine the amount of contamination by genomic DNA from lysed leukocytes. ctDNA quality was assessed by digital PCR for somatic variant detection. cfDNA quantity and recovery efficiency were lowest using the MX platform, whereas QA and QS showed a comparable performance. All platforms preferentially isolated small (136 bp) DNA fragments over large (420 and 2000 bp) DNA fragments. Detection of the number variant and wild‐type molecules was most comparable between QA and QS. However, there was no significant difference in variant allele frequency comparing QS and MX to QA. In summary, we show that the QS platform has comparable performance to QA, the ‘gold standard’, and outperformed the MX platform depending on the readout used. We conclude that the QS can replace the more laborious QA platform, especially when high‐throughput cfDNA isolation is needed. John Wiley and Sons Inc. 2018-12-22 2019-02 /pmc/articles/PMC6360376/ /pubmed/30516338 http://dx.doi.org/10.1002/1878-0261.12415 Text en © 2018 The Authors. Published by FEBS Press and John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles van Dessel, Lisanne F. Vitale, Silvia R. Helmijr, Jean C. A. Wilting, Saskia M. van der Vlugt‐Daane, Michelle Oomen‐de Hoop, Esther Sleijfer, Stefan Martens, John W. M. Jansen, Maurice P. H. M. Lolkema, Martijn P. High‐throughput isolation of circulating tumor DNA: a comparison of automated platforms |
title | High‐throughput isolation of circulating tumor DNA: a comparison of automated platforms |
title_full | High‐throughput isolation of circulating tumor DNA: a comparison of automated platforms |
title_fullStr | High‐throughput isolation of circulating tumor DNA: a comparison of automated platforms |
title_full_unstemmed | High‐throughput isolation of circulating tumor DNA: a comparison of automated platforms |
title_short | High‐throughput isolation of circulating tumor DNA: a comparison of automated platforms |
title_sort | high‐throughput isolation of circulating tumor dna: a comparison of automated platforms |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6360376/ https://www.ncbi.nlm.nih.gov/pubmed/30516338 http://dx.doi.org/10.1002/1878-0261.12415 |
work_keys_str_mv | AT vandessellisannef highthroughputisolationofcirculatingtumordnaacomparisonofautomatedplatforms AT vitalesilviar highthroughputisolationofcirculatingtumordnaacomparisonofautomatedplatforms AT helmijrjeanca highthroughputisolationofcirculatingtumordnaacomparisonofautomatedplatforms AT wiltingsaskiam highthroughputisolationofcirculatingtumordnaacomparisonofautomatedplatforms AT vandervlugtdaanemichelle highthroughputisolationofcirculatingtumordnaacomparisonofautomatedplatforms AT oomendehoopesther highthroughputisolationofcirculatingtumordnaacomparisonofautomatedplatforms AT sleijferstefan highthroughputisolationofcirculatingtumordnaacomparisonofautomatedplatforms AT martensjohnwm highthroughputisolationofcirculatingtumordnaacomparisonofautomatedplatforms AT jansenmauricephm highthroughputisolationofcirculatingtumordnaacomparisonofautomatedplatforms AT lolkemamartijnp highthroughputisolationofcirculatingtumordnaacomparisonofautomatedplatforms |