Cargando…
Comparing neural‐ and N‐gram‐based language models for word segmentation
Word segmentation is the task of inserting or deleting word boundary characters in order to separate character sequences that correspond to words in some language. In this article we propose an approach based on a beam search algorithm and a language model working at the byte/character level, the la...
Autores principales: | Doval, Yerai, Gómez‐Rodríguez, Carlos |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6360409/ https://www.ncbi.nlm.nih.gov/pubmed/30775406 http://dx.doi.org/10.1002/asi.24082 |
Ejemplares similares
-
Not All Swear Words Are Used Equal: Attention over Word n-grams for Abusive Language Identification
por: Jarquín-Vásquez, Horacio Jesús, et al.
Publicado: (2020) -
Augmented-syllabification of n-gram tagger for Indonesian words and named-entities
por: Suyanto, Suyanto, et al.
Publicado: (2022) -
Beneficial effects of word final stress in segmenting a new language: evidence from ERPs
por: Cunillera, Toni, et al.
Publicado: (2008) -
The neural representation of abstract words may arise through grounding word meaning in language itself
por: Hultén, Annika, et al.
Publicado: (2021) -
N-gram analysis of 970 microbial organisms reveals presence of biological language models
por: Osmanbeyoglu, Hatice Ulku, et al.
Publicado: (2011)