Cargando…
Sediment Characterization at the Equatorial Mid‐Atlantic Ridge From P‐to‐S Teleseismic Phase Conversions Recorded on the PI‐LAB Experiment
Accurate marine sediment characteristics, for example, thickness and seismic velocity, are important for constraining sedimentation rates with implications for climate variations and for seismic imaging of deeper structures using ocean bottom seismic deployments. We analyze P‐to‐S seismic phase conv...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6360481/ https://www.ncbi.nlm.nih.gov/pubmed/30774166 http://dx.doi.org/10.1029/2018GL080565 |
_version_ | 1783392493699596288 |
---|---|
author | Agius, M. R. Harmon, N. Rychert, C. A. Tharimena, S. Kendall, J.‐M. |
author_facet | Agius, M. R. Harmon, N. Rychert, C. A. Tharimena, S. Kendall, J.‐M. |
author_sort | Agius, M. R. |
collection | PubMed |
description | Accurate marine sediment characteristics, for example, thickness and seismic velocity, are important for constraining sedimentation rates with implications for climate variations and for seismic imaging of deeper structures using ocean bottom seismic deployments. We analyze P‐to‐S seismic phase conversions from the sediment‐crust boundary recorded by the Passive Imaging of the Lithosphere‐Asthenosphere Boundary (PI‐LAB) experiment to infer the sediment thickness across the Mid‐Atlantic Ridge covering 0‐ to 80‐Myr‐old seafloor. We find P (d) s‐P delay times of 0.04–0.37 s, or 5‐ to 82‐m thickness. Sediment thickness increases with age. Thickness agrees with global estimates for young (<15–20 Myr) seafloor but is thinner on older lithosphere. Our result may represent a lower limit on sediment thickness, given that several of our stations are on topographic highs. The sedimentation rate decrease observed from 5 to 1.2 mm/kyr at ∼10 Myr suggests a recent increase in productivity related to climate change, eolian dust fluxes, and/or biogenic marine activity. |
format | Online Article Text |
id | pubmed-6360481 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-63604812019-02-14 Sediment Characterization at the Equatorial Mid‐Atlantic Ridge From P‐to‐S Teleseismic Phase Conversions Recorded on the PI‐LAB Experiment Agius, M. R. Harmon, N. Rychert, C. A. Tharimena, S. Kendall, J.‐M. Geophys Res Lett Research Letters Accurate marine sediment characteristics, for example, thickness and seismic velocity, are important for constraining sedimentation rates with implications for climate variations and for seismic imaging of deeper structures using ocean bottom seismic deployments. We analyze P‐to‐S seismic phase conversions from the sediment‐crust boundary recorded by the Passive Imaging of the Lithosphere‐Asthenosphere Boundary (PI‐LAB) experiment to infer the sediment thickness across the Mid‐Atlantic Ridge covering 0‐ to 80‐Myr‐old seafloor. We find P (d) s‐P delay times of 0.04–0.37 s, or 5‐ to 82‐m thickness. Sediment thickness increases with age. Thickness agrees with global estimates for young (<15–20 Myr) seafloor but is thinner on older lithosphere. Our result may represent a lower limit on sediment thickness, given that several of our stations are on topographic highs. The sedimentation rate decrease observed from 5 to 1.2 mm/kyr at ∼10 Myr suggests a recent increase in productivity related to climate change, eolian dust fluxes, and/or biogenic marine activity. John Wiley and Sons Inc. 2018-11-23 2018-11-28 /pmc/articles/PMC6360481/ /pubmed/30774166 http://dx.doi.org/10.1029/2018GL080565 Text en ©2018. The Authors. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Letters Agius, M. R. Harmon, N. Rychert, C. A. Tharimena, S. Kendall, J.‐M. Sediment Characterization at the Equatorial Mid‐Atlantic Ridge From P‐to‐S Teleseismic Phase Conversions Recorded on the PI‐LAB Experiment |
title | Sediment Characterization at the Equatorial Mid‐Atlantic Ridge From P‐to‐S Teleseismic Phase Conversions Recorded on the PI‐LAB Experiment |
title_full | Sediment Characterization at the Equatorial Mid‐Atlantic Ridge From P‐to‐S Teleseismic Phase Conversions Recorded on the PI‐LAB Experiment |
title_fullStr | Sediment Characterization at the Equatorial Mid‐Atlantic Ridge From P‐to‐S Teleseismic Phase Conversions Recorded on the PI‐LAB Experiment |
title_full_unstemmed | Sediment Characterization at the Equatorial Mid‐Atlantic Ridge From P‐to‐S Teleseismic Phase Conversions Recorded on the PI‐LAB Experiment |
title_short | Sediment Characterization at the Equatorial Mid‐Atlantic Ridge From P‐to‐S Teleseismic Phase Conversions Recorded on the PI‐LAB Experiment |
title_sort | sediment characterization at the equatorial mid‐atlantic ridge from p‐to‐s teleseismic phase conversions recorded on the pi‐lab experiment |
topic | Research Letters |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6360481/ https://www.ncbi.nlm.nih.gov/pubmed/30774166 http://dx.doi.org/10.1029/2018GL080565 |
work_keys_str_mv | AT agiusmr sedimentcharacterizationattheequatorialmidatlanticridgefromptosteleseismicphaseconversionsrecordedonthepilabexperiment AT harmonn sedimentcharacterizationattheequatorialmidatlanticridgefromptosteleseismicphaseconversionsrecordedonthepilabexperiment AT rychertca sedimentcharacterizationattheequatorialmidatlanticridgefromptosteleseismicphaseconversionsrecordedonthepilabexperiment AT tharimenas sedimentcharacterizationattheequatorialmidatlanticridgefromptosteleseismicphaseconversionsrecordedonthepilabexperiment AT kendalljm sedimentcharacterizationattheequatorialmidatlanticridgefromptosteleseismicphaseconversionsrecordedonthepilabexperiment |