Cargando…
Learnable manifold alignment (LeMA): A semi-supervised cross-modality learning framework for land cover and land use classification
In this paper, we aim at tackling a general but interesting cross-modality feature learning question in remote sensing community—can a limited amount of highly-discriminative (e.g., hyperspectral) training data improve the performance of a classification task using a large amount of poorly-discrimin...
Autores principales: | Hong, Danfeng, Yokoya, Naoto, Ge, Nan, Chanussot, Jocelyn, Zhu, Xiao Xiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6360532/ https://www.ncbi.nlm.nih.gov/pubmed/30774220 http://dx.doi.org/10.1016/j.isprsjprs.2018.10.006 |
Ejemplares similares
-
X-ModalNet: A semi-supervised deep cross-modal network for classification of remote sensing data
por: Hong, Danfeng, et al.
Publicado: (2020) -
Learning to propagate labels on graphs: An iterative multitask regression framework for semi-supervised hyperspectral dimensionality reduction
por: Hong, Danfeng, et al.
Publicado: (2019) -
Multimodal remote sensing benchmark datasets for land cover classification with a shared and specific feature learning model
por: Hong, Danfeng, et al.
Publicado: (2021) -
Identifying hotspots in land use land cover change and the drivers in a semi-arid region of India
por: Duraisamy, Vijayasekaran, et al.
Publicado: (2018) -
A supervised land cover classification of a western Kenya lowland endemic for human malaria: associations of land cover with larval Anopheles habitats
por: Mutuku, FM, et al.
Publicado: (2009)