Cargando…
Motor Imagery EEG Classification Based on Decision Tree Framework and Riemannian Geometry
This paper proposes a novel classification framework and a novel data reduction method to distinguish multiclass motor imagery (MI) electroencephalography (EEG) for brain computer interface (BCI) based on the manifold of covariance matrices in a Riemannian perspective. For method 1, a subject-specif...
Autores principales: | Guan, Shan, Zhao, Kai, Yang, Shuning |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6360593/ https://www.ncbi.nlm.nih.gov/pubmed/30804988 http://dx.doi.org/10.1155/2019/5627156 |
Ejemplares similares
-
Decoding Multi-Class Motor Imagery and Motor Execution Tasks Using Riemannian Geometry Algorithms on Large EEG Datasets
por: Shuqfa, Zaid, et al.
Publicado: (2023) -
Hyperscanning EEG and Classification Based on Riemannian Geometry for Festive and Violent Mental State Discrimination
por: Simar, Cédric, et al.
Publicado: (2020) -
Riemannian geometry
por: Petersen, Peter
Publicado: (2016) -
Riemannian geometry
por: Petersen, Peter
Publicado: (1998) -
Riemannian geometry
por: Petersen, Peter
Publicado: (2006)