Cargando…
Evaluating maize phenotype dynamics under drought stress using terrestrial lidar
BACKGROUND: Maize (Zea mays L.) is the third most consumed grain in the world and improving maize yield is of great importance of the world food security, especially under global climate change and more frequent severe droughts. Due to the limitation of phenotyping methods, most current studies only...
Autores principales: | Su, Yanjun, Wu, Fangfang, Ao, Zurui, Jin, Shichao, Qin, Feng, Liu, Boxin, Pang, Shuxin, Liu, Lingli, Guo, Qinghua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6360786/ https://www.ncbi.nlm.nih.gov/pubmed/30740137 http://dx.doi.org/10.1186/s13007-019-0396-x |
Ejemplares similares
-
Deep Learning: Individual Maize Segmentation From Terrestrial Lidar Data Using Faster R-CNN and Regional Growth Algorithms
por: Jin, Shichao, et al.
Publicado: (2018) -
Non-destructive estimation of field maize biomass using terrestrial lidar: an evaluation from plot level to individual leaf level
por: Jin, Shichao, et al.
Publicado: (2020) -
Exploring Seasonal and Circadian Rhythms in Structural Traits of Field Maize from LiDAR Time Series
por: Jin, Shichao, et al.
Publicado: (2021) -
Phenotyping maize for adaptation to drought
por: Araus, Jose L., et al.
Publicado: (2012) -
An Algorithm for Fitting Sphere Target of Terrestrial LiDAR
por: Shi, Yintao, et al.
Publicado: (2021)