Cargando…
BIPSPI: a method for the prediction of partner-specific protein–protein interfaces
MOTIVATION: Protein–Protein Interactions (PPI) are essentials for most cellular processes and thus, unveiling how proteins interact is a crucial question that can be better understood by identifying which residues are responsible for the interaction. Computational approaches are orders of magnitude...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6361243/ https://www.ncbi.nlm.nih.gov/pubmed/30020406 http://dx.doi.org/10.1093/bioinformatics/bty647 |
_version_ | 1783392655782182912 |
---|---|
author | Sanchez-Garcia, Ruben Sorzano, C O S Carazo, J M Segura, Joan |
author_facet | Sanchez-Garcia, Ruben Sorzano, C O S Carazo, J M Segura, Joan |
author_sort | Sanchez-Garcia, Ruben |
collection | PubMed |
description | MOTIVATION: Protein–Protein Interactions (PPI) are essentials for most cellular processes and thus, unveiling how proteins interact is a crucial question that can be better understood by identifying which residues are responsible for the interaction. Computational approaches are orders of magnitude cheaper and faster than experimental ones, leading to proliferation of multiple methods aimed to predict which residues belong to the interface of an interaction. RESULTS: We present BIPSPI, a new machine learning-based method for the prediction of partner-specific PPI sites. Contrary to most binding site prediction methods, the proposed approach takes into account a pair of interacting proteins rather than a single one in order to predict partner-specific binding sites. BIPSPI has been trained employing sequence-based and structural features from both protein partners of each complex compiled in the Protein–Protein Docking Benchmark version 5.0 and in an additional set independently compiled. Also, a version trained only on sequences has been developed. The performance of our approach has been assessed by a leave-one-out cross-validation over different benchmarks, outperforming state-of-the-art methods. AVAILABILITY AND IMPLEMENTATION: BIPSPI web server is freely available at http://bipspi.cnb.csic.es. BIPSPI code is available at https://github.com/bioinsilico/BIPSPI. Docker image is available at https://hub.docker.com/r/bioinsilico/bipspi/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. |
format | Online Article Text |
id | pubmed-6361243 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-63612432019-02-08 BIPSPI: a method for the prediction of partner-specific protein–protein interfaces Sanchez-Garcia, Ruben Sorzano, C O S Carazo, J M Segura, Joan Bioinformatics Original Papers MOTIVATION: Protein–Protein Interactions (PPI) are essentials for most cellular processes and thus, unveiling how proteins interact is a crucial question that can be better understood by identifying which residues are responsible for the interaction. Computational approaches are orders of magnitude cheaper and faster than experimental ones, leading to proliferation of multiple methods aimed to predict which residues belong to the interface of an interaction. RESULTS: We present BIPSPI, a new machine learning-based method for the prediction of partner-specific PPI sites. Contrary to most binding site prediction methods, the proposed approach takes into account a pair of interacting proteins rather than a single one in order to predict partner-specific binding sites. BIPSPI has been trained employing sequence-based and structural features from both protein partners of each complex compiled in the Protein–Protein Docking Benchmark version 5.0 and in an additional set independently compiled. Also, a version trained only on sequences has been developed. The performance of our approach has been assessed by a leave-one-out cross-validation over different benchmarks, outperforming state-of-the-art methods. AVAILABILITY AND IMPLEMENTATION: BIPSPI web server is freely available at http://bipspi.cnb.csic.es. BIPSPI code is available at https://github.com/bioinsilico/BIPSPI. Docker image is available at https://hub.docker.com/r/bioinsilico/bipspi/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. Oxford University Press 2019-02-01 2018-07-18 /pmc/articles/PMC6361243/ /pubmed/30020406 http://dx.doi.org/10.1093/bioinformatics/bty647 Text en © The Author(s) 2018. Published by Oxford University Press. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Papers Sanchez-Garcia, Ruben Sorzano, C O S Carazo, J M Segura, Joan BIPSPI: a method for the prediction of partner-specific protein–protein interfaces |
title | BIPSPI: a method for the prediction of partner-specific protein–protein interfaces |
title_full | BIPSPI: a method for the prediction of partner-specific protein–protein interfaces |
title_fullStr | BIPSPI: a method for the prediction of partner-specific protein–protein interfaces |
title_full_unstemmed | BIPSPI: a method for the prediction of partner-specific protein–protein interfaces |
title_short | BIPSPI: a method for the prediction of partner-specific protein–protein interfaces |
title_sort | bipspi: a method for the prediction of partner-specific protein–protein interfaces |
topic | Original Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6361243/ https://www.ncbi.nlm.nih.gov/pubmed/30020406 http://dx.doi.org/10.1093/bioinformatics/bty647 |
work_keys_str_mv | AT sanchezgarciaruben bipspiamethodforthepredictionofpartnerspecificproteinproteininterfaces AT sorzanocos bipspiamethodforthepredictionofpartnerspecificproteinproteininterfaces AT carazojm bipspiamethodforthepredictionofpartnerspecificproteinproteininterfaces AT segurajoan bipspiamethodforthepredictionofpartnerspecificproteinproteininterfaces |