Cargando…
Early exposure to UV radiation overshadowed by precipitation and litter quality as drivers of decomposition in the northern Chihuahuan Desert
Dryland ecosystems cover nearly 45% of the Earth’s land area and account for large proportions of terrestrial net primary production and carbon pools. However, predicting rates of plant litter decomposition in these vast ecosystems has proven challenging due to their distinctly dry and often hot cli...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6361422/ https://www.ncbi.nlm.nih.gov/pubmed/30716078 http://dx.doi.org/10.1371/journal.pone.0210470 |
_version_ | 1783392681004630016 |
---|---|
author | Hewins, Daniel B. Lee, Hanna Barnes, Paul W. McDowell, Nathan G. Pockman, William T. Rahn, Thom Throop, Heather L. |
author_facet | Hewins, Daniel B. Lee, Hanna Barnes, Paul W. McDowell, Nathan G. Pockman, William T. Rahn, Thom Throop, Heather L. |
author_sort | Hewins, Daniel B. |
collection | PubMed |
description | Dryland ecosystems cover nearly 45% of the Earth’s land area and account for large proportions of terrestrial net primary production and carbon pools. However, predicting rates of plant litter decomposition in these vast ecosystems has proven challenging due to their distinctly dry and often hot climate regimes, and potentially unique physical drivers of decomposition. In this study, we elucidated the role of photopriming, i.e. exposure of standing dead leaf litter to solar radiation prior to litter drop that would chemically change litter and enhance biotic decay of fallen litter. We exposed litter substrates to three different UV radiation treatments simulating three-months of UV radiation exposure in southern New Mexico: no light, UVA+UVB+Visible, and UVA+Visible. There were three litter types: mesquite leaflets (Prosopis glandulosa, litter with high nitrogen (N) concentration), filter paper (pure cellulose), and basswood (Tilia spp, high lignin concentration). We deployed the photoprimed litter in the field within a large scale precipitation manipulation experiment: ∼50% precipitation reduction, ∼150% precipitation addition, and ambient control. Our results revealed the importance of litter substrate, particularly N content, for overall decomposition in drylands, as neither filter paper nor basswood exhibited measurable mass loss over the course of the year-long study, while high N-containing mesquite litter exhibited potential mass loss. We saw no effect of photopriming on subsequent microbial decay. We did observe a precipitation effect on mesquite where the rate of decay was more rapid in ambient and precipitation addition treatments than in the drought treatment. Overall, we found that precipitation and N played a critical role in litter mass loss. In contrast, photopriming had no detected effects on mass loss over the course of our year-long study. These results underpin the importance of biotic-driven decomposition, even in the presence of photopriming, for understanding litter decomposition and biogeochemical cycles in drylands. |
format | Online Article Text |
id | pubmed-6361422 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-63614222019-02-15 Early exposure to UV radiation overshadowed by precipitation and litter quality as drivers of decomposition in the northern Chihuahuan Desert Hewins, Daniel B. Lee, Hanna Barnes, Paul W. McDowell, Nathan G. Pockman, William T. Rahn, Thom Throop, Heather L. PLoS One Research Article Dryland ecosystems cover nearly 45% of the Earth’s land area and account for large proportions of terrestrial net primary production and carbon pools. However, predicting rates of plant litter decomposition in these vast ecosystems has proven challenging due to their distinctly dry and often hot climate regimes, and potentially unique physical drivers of decomposition. In this study, we elucidated the role of photopriming, i.e. exposure of standing dead leaf litter to solar radiation prior to litter drop that would chemically change litter and enhance biotic decay of fallen litter. We exposed litter substrates to three different UV radiation treatments simulating three-months of UV radiation exposure in southern New Mexico: no light, UVA+UVB+Visible, and UVA+Visible. There were three litter types: mesquite leaflets (Prosopis glandulosa, litter with high nitrogen (N) concentration), filter paper (pure cellulose), and basswood (Tilia spp, high lignin concentration). We deployed the photoprimed litter in the field within a large scale precipitation manipulation experiment: ∼50% precipitation reduction, ∼150% precipitation addition, and ambient control. Our results revealed the importance of litter substrate, particularly N content, for overall decomposition in drylands, as neither filter paper nor basswood exhibited measurable mass loss over the course of the year-long study, while high N-containing mesquite litter exhibited potential mass loss. We saw no effect of photopriming on subsequent microbial decay. We did observe a precipitation effect on mesquite where the rate of decay was more rapid in ambient and precipitation addition treatments than in the drought treatment. Overall, we found that precipitation and N played a critical role in litter mass loss. In contrast, photopriming had no detected effects on mass loss over the course of our year-long study. These results underpin the importance of biotic-driven decomposition, even in the presence of photopriming, for understanding litter decomposition and biogeochemical cycles in drylands. Public Library of Science 2019-02-04 /pmc/articles/PMC6361422/ /pubmed/30716078 http://dx.doi.org/10.1371/journal.pone.0210470 Text en https://creativecommons.org/publicdomain/zero/1.0/ This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 (https://creativecommons.org/publicdomain/zero/1.0/) public domain dedication. |
spellingShingle | Research Article Hewins, Daniel B. Lee, Hanna Barnes, Paul W. McDowell, Nathan G. Pockman, William T. Rahn, Thom Throop, Heather L. Early exposure to UV radiation overshadowed by precipitation and litter quality as drivers of decomposition in the northern Chihuahuan Desert |
title | Early exposure to UV radiation overshadowed by precipitation and litter quality as drivers of decomposition in the northern Chihuahuan Desert |
title_full | Early exposure to UV radiation overshadowed by precipitation and litter quality as drivers of decomposition in the northern Chihuahuan Desert |
title_fullStr | Early exposure to UV radiation overshadowed by precipitation and litter quality as drivers of decomposition in the northern Chihuahuan Desert |
title_full_unstemmed | Early exposure to UV radiation overshadowed by precipitation and litter quality as drivers of decomposition in the northern Chihuahuan Desert |
title_short | Early exposure to UV radiation overshadowed by precipitation and litter quality as drivers of decomposition in the northern Chihuahuan Desert |
title_sort | early exposure to uv radiation overshadowed by precipitation and litter quality as drivers of decomposition in the northern chihuahuan desert |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6361422/ https://www.ncbi.nlm.nih.gov/pubmed/30716078 http://dx.doi.org/10.1371/journal.pone.0210470 |
work_keys_str_mv | AT hewinsdanielb earlyexposuretouvradiationovershadowedbyprecipitationandlitterqualityasdriversofdecompositioninthenorthernchihuahuandesert AT leehanna earlyexposuretouvradiationovershadowedbyprecipitationandlitterqualityasdriversofdecompositioninthenorthernchihuahuandesert AT barnespaulw earlyexposuretouvradiationovershadowedbyprecipitationandlitterqualityasdriversofdecompositioninthenorthernchihuahuandesert AT mcdowellnathang earlyexposuretouvradiationovershadowedbyprecipitationandlitterqualityasdriversofdecompositioninthenorthernchihuahuandesert AT pockmanwilliamt earlyexposuretouvradiationovershadowedbyprecipitationandlitterqualityasdriversofdecompositioninthenorthernchihuahuandesert AT rahnthom earlyexposuretouvradiationovershadowedbyprecipitationandlitterqualityasdriversofdecompositioninthenorthernchihuahuandesert AT throopheatherl earlyexposuretouvradiationovershadowedbyprecipitationandlitterqualityasdriversofdecompositioninthenorthernchihuahuandesert |