Cargando…
Condition-Dependent Neural Dimensions Progressively Shift during Reach to Grasp
Neural population space analysis was performed to assess the dimensionality and dynamics of the neural population in the primary motor cortex (M1) during a reach-grasp-manipulation task in which both the reach location and the object being grasped were varied. We partitioned neural activity into thr...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6361546/ https://www.ncbi.nlm.nih.gov/pubmed/30540947 http://dx.doi.org/10.1016/j.celrep.2018.11.057 |
Sumario: | Neural population space analysis was performed to assess the dimensionality and dynamics of the neural population in the primary motor cortex (M1) during a reach-grasp-manipulation task in which both the reach location and the object being grasped were varied. We partitioned neural activity into three components: (1) general task-related activity independent of location and object, (2) location- and/or object-related activity, and (3) noise. Neural modulation related to location and/or object was only one-third the size of either general task modulation or noise. The neural dimensions of location and/or object-related activity overlapped with both the general task and noise dimensions. Rather than large amplitude modulation in a fixed set of dimensions, the active dimensions of location and/or object modulation shifted progressively over the time course of a trial. |
---|